Что молекулы вещества. Атомы и молекулы. Валентность. Донорно-акцепторные связи

Все вещества в природе состоят из очень маленьких частиц, называемых молекулами. Эти частички в веществе постоянно взаимодействуют между собой. Невооруженным взглядом нельзя их увидеть. Понятие, основные свойства и характеристики молекул мы и рассмотрим в статье.

Молекулами называются частицы, имеющие нейтральный электрический заряд и состоящие из различного количества атомов. Число их, как правило, всегда больше двух, и связаны эти атомы между собой ковалентной связью. Впервые о существовании молекул стало известно во Франции. За это нужно отдать должное физику Жану Перрену, который и совершил это великое открытие в 1906 году. Состав молекулы постоянен. Она не меняет его на протяжении всего своего существования. Строение этой маленькой частички зависит от того, какими физическими свойствами обладает образуемое ею вещество.


Каждая молекула индивидуальна тем, что атомы в ее составе наделены различными химическими взаимодействиями и конфигурациями, характерными для конкретного вещества. Связываются атомы валентно и невалентно. Благодаря валентности связей, частица обеспечивается базовыми характеристиками и постоянством. Невалентность связей оказывает большое влияние на характеристики молекул. Происходит это благодаря свойству вещества, состоящему из них.


Кроме того, в молекуле существуют двухцетровые связи и многоцентровые. Из последних наиболее распространены трех- и четырехцентровые.


Молекулы, по сути, являются подвижными системами, в них атомы вращаются вокруг ядра конфигурации, прибывающего в состоянии равновесия. А сами молекулы движутся хаотично. Если расстояние между ними большое, то они друг к другу притягиваются, а если интервал маленький, то тогда одна молекула отталкивает от себя другую.


В состав молекул входят частицы, называемые атомами . То, как они располагаются в этой частице, можно зафиксировать определенной структурной формулой. Передается молекулярный состав формулой брутто. К примеру, Н2О – это формула воды. Молекула этого вещества содержит в себе 2 атома водорода и 1 атом кислорода. O2 – это кислород, Н2CO3 – это угольная кислота. Встречаются и такие типы молекул, преобладание атомов в которых вычисляется ни единицами, ни десятками и даже ни сотнями, а тысячами. Эта особенность свойственна белковым частицам.


Изучением молекул в веществе занимается квантовая химия, теория о строении молекул. В ходе реакций, проводимых химиками между веществами, получаются сведения о строении и особенностях молекул. Не обходится здесь и без открытий в области квантовой физики, которые благотворно используются при исследовании этих частиц в науке.


При определении, из чего же состоит молекула, учеными применяются методики дифракционного типа. К ним относятся методики рентгеновского структурного исследования и нейтроновой дифракции. Это прямые формы методов. Также предполагается изучение молекул и другими научными способами.


Надеемся, что из этой статьи вы получили для себя много полезной и интересной информации о молекулах. Теперь вы точно знаете, что это за частица, и имеете представление о ее составе, основных свойствах и способах исследования молекул учеными в области химии.

Цели урока:

  • рассказать ученикам о молекулах и атомах и научить различать их.

Задачи урока:

Обучающие: изучить новый материал по теме «Молекулы и атомы»;

Развивающие: содействовать развитию мышления и познавательных умений; овладению методами синтеза и анализа;

Воспитательные: воспитание положительной мотивации к обучению.

Основные термины:

Молекула – нейтральная электрически частица, которая состоит из двух и более атомов, связанных ковалентными связями; наименьшая частица вещества, которая обладает его свойствами.

Атом – самая маленькая неделимая химически часть элемента, которая является носителем его свойств; состоит из электронов и атомного ядра. Различное количество разных атомов, связанных межатомными связями, образуют молекулы.

Атомное ядро – центральная часть атома, в которой сосредоточено более 99,9% его массы.

3.Почему не видны частицы, из которых состоит вещество ?

4.Как объяснить высыхание белья после стирки?

5.Почему твердые тела, состоящие из частиц, кажутся сплошными?

Молекулы.

2.Как называются частицы, из которых состоят молекулы?

3.Опишите опыт, с помощью которого можно определить размер молекулы.

4.Различаются ли молекулы одного вещества в его различных агрегатных состояниях?

5.Что такое атом и из чего он состоит

Домашнее задание.

Попробуйте провести дома опыт по измерению размера молекулы любого вещества.

Интересно знать, что.

Понятие об атоме как о наименьшей неделимой части материи было впервые сформулировано древнеиндийскими и древнегреческими философами. В XVII и XVIII веках химикам удалось экспериментально подтвердить эту идею, показав, что некоторые вещества не могут быть подвергнуты дальнейшему расщеплению на составляющие элементы с помощью химических методов. Однако в конце XIX - начале XX века физиками были открыты субатомные частицы и составная структура атома, и стало ясно, что атом в действительности не является «неделимым».

На международном съезде химиков в г. Карлсруэ (Германия) в 1860 г. были приняты определения понятий молекулы и атома. Атом - наименьшая частица химического элемента, входящая в состав простых и сложных веществ.

Физика атомов и молекул - раздел физики, изучающий внутреннее строение и физические свойства атомов, молекул и их более сложных объединений (кластеров), а также физические явления при низкоэнергетических элементарных актах взаимодействия объектов между собой с элементарными частицами.

При изучении физики атомов и молекул основными являются такие экспериментальные методы как спектроскопия и масс-спектрометрия со всеми их разновидностями, некоторые виды хроматографии, резонансных методов и микроскопии, теоретические методы квантовой механики, статистической физики и термодинамики. Физика атомов и молекул тесно взаимосвязана с молекулярной физикой, в которой изучаются (коллективные) физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического строения, а также с некоторыми разделами химии.

Давайте проведем краткий экскурс в историю развития атомно-молекулярной теории:

Список литературы

1.Урок на тему «Молекулы и атомы» С.В. Громов, И.А. Родина, учителя физики.

2.Урок на тему «Строение вещества» Фонин Илья Александрович, Камзеева Елена Евгеньевна, учитель физики, МОУ Гимназия №8, г.Казань.

3.Г. Остер. Физика. Задачник. Ненаглядное пособие.- М.: Росмэн, 1998.

4.Мейяни А. Большая книга экспериментов для школьников. М.: «Росмен». 2004 г.

5.Global Physics «Атомы и молекулы».

Отредактировано и выслано Борисенко И.Н.

Над уроком работали:

Громов С.В.

Фонин И.А.

Молекула (франц. molecule, от лат. moles - масса) - это наименьшая способная к самостоятельному существованию частица вещества, обладающая его химическими свойствами.

Учение о строении и свойствах молекул приобрело исключительный интерес для познания субмикроскопической структуры клеток и тканей, а также механизма биологических процессов на молекулярном уровне. Большие успехи в изучении структуры молекул и, в частности, молекул таких биополимеров, как белки и нуклеиновые кислоты, показали, что важнейшие функции этих веществ в организмах осуществляются на уровне отдельных молекул и поэтому должны исследоваться как молекулярные явления. Установлено, например, что такие функции белков, как ферментативная, структурная, сократительная, иммунная, транспортная (обратимое связывание и перенос жизненно необходимых веществ) разыгрываются на молекулярном уровне и непосредственно определяются структурой и свойствами молекул этих веществ. Наследственность и изменчивость организмов связаны с особой структурой и свойствами молекул нуклеиновых кислот, в которых зафиксирована вся генетическая информация, необходимая для синтеза белков организма. Небольшие отклонения в структуре или составе молекул ряда биологически важных веществ или изменения в молекулярном механизме некоторых обменных процессов являются причиной возникновения ряда заболеваний (например, серповидноклеточная анемия, наследственная галактоземия, сахарный диабет и др.), называемых молекулярными болезнями.

Молекула каждого вещества состоит из определенного числа атомов (см.) одного химического элемента (простое вещество) или различных элементов (сложное вещество), объединенных посредством химических (валентных) связей. Состав молекулы выражают химической формулой, в которой знаки элементов указывают вид атомов, образующих молекулу, а числа, стоящие справа внизу, показывают, сколько атомов каждого элемента входит в состав молекулы. Так, из химической формулы глюкозы С 6 H 12 O 6 следует, что молекула глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулы инертных газов и паров некоторых металлов одноатомны. Это самые простые молекулы. Наиболее сложными являются молекулы белков (см.), нуклеиновых кислот (см.) и других биополимеров, состоящие из многих тысяч атомов.

Для нахождения химической формулы молекулы необходимо определить приблизительный молекулярный вес (см.) исследуемого вещества и простейшую (эмпирическую) формулу его молекулы. Последнюю выводят из процентного состава данного вещества и атомных весов (см.) химических элементов, входящих в состав этого вещества. Так, например, химическим анализом установлено, что бензол состоит из 92,26% углерода и 7,74% водорода. Отсюда следует, что отношение числа атомов углерода к числу атомов водорода в молекуле бензола равно:

где 12,011 и 1,008 - атомные веса углерода и водорода соответственно. Следовательно, простейшая формула бензола должна быть СН. Сопоставляя простейшую формулу бензола с его приблизительным молекулярным весом (78,1), найденным опытным путем, определяют его действительную, или истинную, формулу С 6 Н 6 .

Размеры молекул выражают в А. Так например, диаметр молекулы воды, предполагая, что она имеет сферическую форму, составляет 3,8 А. Молекулы высокомолекулярных веществ значительно больше, например линейные размеры больших и малых осей палочковидных молекул фибриногена быка равны 700 и 40 А, а вируса табачной мозаики - 2800 и 152 А соответственно. Мерой относительной массы молекулы является молекулярный вес (см.), величина которого колеблется от нескольких единиц до миллионов.

Последовательность, в которой атомы связаны в молекуле (химическое строение молекул по А. М. Бутлерову), изображают так называемыми структурными формулами. Например, химическое строение уксусной кислоты С 2 Н 4 O 2 представляют следующей структурной формулой:

где каждая линия обозначает единицу валентности (см.), число линий, подходящих к атому, равно его валентности в данном соединении.

Химическое строение молекулы, находимое на основании определения молекулярного веса, химического состава и изучения химических свойств исследуемого вещества и окончательно подтверждаемое его синтезом из веществ, химическое строение которых известно, является важным фактором, определяющим свойства вещества, в частности его фармакологическое действие, токсичность и биологические функции. Различие в свойствах изомеров (см. Изомерия) является примером зависимости свойств веществ от химического строения их молекул. Атомный состав молекул изомеров одинаков, так, например, диметиловый эфир и этиловый спирт, будучи изомерами, имеют одинаковые химические формулы С 2 Н 6 O, однако структурные формулы их различны:

чем и объясняются их различные свойства.

Способность атома образовывать то или иное число химических связей с другими атомами в молекулах называют валентностью данного атома. При образовании химической (валентной) связи происходит перегруппировка внешних (валентных) электронов взаимодействующих атомов, в результате которой внешние электронные оболочки атомов в молекуле приобретают устойчивую структуру, свойственную атомам инертных газов (см.) и состоящую обычно из восьми электронов (электронный октет). В зависимости от способа перегруппировки валентных электронов различают несколько основных типов химических связей.

Ионная (электровалентная) связь возникает между атомами элементов, сильно различающихся по химическим свойствам, например между атомами щелочных металлов и атомами галогенов. При этом атом металла отдает электрон атому галогена (рис. 1).


Рис. 1. Образование молекулы хлористого натрия.

Атом, отдающий электрон, становится положительно заряженным ионом. Атом, принимающий электрон, становится отрицательно заряженным ионом. Возникающие таким путем противоположно заряженные ионы взаимно притягиваются, образуя молекулу. Молекулы и соединения с ионными связями (например, соли и окислы металлов первой и второй групп периодической системы элементов) называются гетерополярными. Ионная связь характеризуется большой прочностью (энергия связи), т. е. работой, необходимой для разрыва молекулы на отдельные ионы.

Ковалентная (атомная) связь возникает при взаимодействии одинаковых или близких по свойствам атомов. При этом каждый из соединяющихся атомов отдает по одному или по нескольку валентных электронов на образование пары (или нескольких пар электронов), которая становится общей для обоих атомов. Обобщенная пара электронов, охватывая в своем движении ядра соединяющихся атомов, удерживает их один возле другого. К молекулам с ковалентной связью относятся молекулы простых газов, окислов и водородных соединений не металлов и многих органических соединений:

Точками обозначены электроны, находящиеся на внешних электронных оболочках атомов, химическими знаками - ядра атомов со всеми электронными оболочками, кроме внешних. Пара электронов, связывающих атомы, соответствует валентной черте в обычных структурных формулах.

Молекулы, в которых электрические центры тяжести отрицательных (электроны) и положительных (ядра атомов) зарядов совпадают, называют гомеополярными. К ним относятся, например, молекулы простых газов, углеводородов. Если электрические центры тяжести отрицательных и положительных зарядов в молекулах не совпадают, молекулы называют полярными (например, молекулы воды, аммиака, галогеноводородов, спиртов, кетонов, альдегидов, эфиров). Полярная молекула ведет себя как диполь, т. е. система из двух электрических зарядов е+ и е- , одинаковых по величине, но противоположных по знаку, расположенных на пекотором расстоянии h один от другого (рис. 2).


Рис. 2. Схема диполя.

Произведение e·h=μ называют дипольным моментом молекулы. Последний является мерой полярности молекулы. Вещества, состоящие из полярных молекул, имеют более высокие температуру кипения, теплоемкость, теплоту парообразования и поверхностное натяжение, чем вещества, состоящие из гомеополярных молекул. Взаимодействие между полярными молекулами является одной из причин ассоциации молекул в жидкостях, а взаимодействие полярных молекул растворителя с полярными молекулами или ионами растворенного вещества - сольватации последних. Скорость диффузии полярных молекул через мембрану клеток меньше таковой для гомеополярных молекул.

Координационная (семиполярная, донорно-акцепторная) связь - это разновидность ковалентной связи, возникает между атомами, входящими в состав разных молекул, у одного из которых имеется неподеленная пара электронов, а у другого не хватает двух электронов для образования устойчивой внешней электронной оболочки. Такого рода связи характерны для комплексных соединений. Так, например, соединение молекулы аммиака NH 3 с молекулой фтористого бора BF3 в комплексную молекулу аммиаката фтористого бора осуществляется неподеленной парой электронов азота

Атом азота служит донором, атом бора акцептором электронной пары.

Водородная связь осуществляется между атомом водорода, ковалентно связанным с атомом F, О или N, и атомами F, О или N, находящимися в других молекулах. Прочность водородной связи невелика (5-10 ккал/моль), однако достаточна для образования ассоциаций молекул в жидкостях и растворах. В воде, например, такие ассоциации имеют следующее строение (водородные связи обозначены пунктиром):

Водородные связи возникают не только между молекулами, но и между атомами внутри одной и той же молекулы; это так называемые внутримолекулярные водородные связи (водородные мостики). Примером такой связи может служить водородная связь между атомом водорода и атомом кислорода в молекуле o-метилсалицилата:

Вследствие наличия этой связи свойства o-метилсалицилата резко отличаются от свойств m- и n-изомеров. Наличие водородных мостиков в молекулах нуклеиновых кислот, белков и других полимеров во многом определяет лабильность этих молекул. Водородные связи играют значительную роль в субмикроскопической структуре протоплазмы.

При помощи рентгено-, электроно-, нейтронографии, молекулярной спектроскопии и ядерного магнитного резонанса удалось установить пространственное расположение отдельных атомов в молекуле, т. е. геометрическую конфигурацию молекул ряда веществ, в том числе молекул биологически важных веществ.

Определение пространственной конфигурации молекул слагается из определения так называемые остова молекулы, т. е. пространственного расположения ядер образующих ее атомов, и распределения электронов в пределах данной молекулы.

Остов молекулы находят на основании данных о длине связи и величине валентных углов, определяемых с помощью указанных выше методов. Длина связи представляет собой расстояние между центрами двух атомов в молекуле, связанных друг с другом ковалентной связью. Меньший по величине угол, образуемый прямыми, соединяющими центры двух атомов А 1 и А 2 с центром третьего атома А 3 в данной молекуле, называют валентным углом. Остов молекулы не является абсолютно жестким. Например, в молекулах органических соединений атомы углерода могут вращаться около ординарных (простых) связей, при этом меняется взаимное положение ядер, но остаются постоянными последовательность соединения атомов в молекуле, длина связей и валентные углы. Такие различные формы молекул, возникающие в результате поворота атома углерода вокруг ординарной связи, называют конформациями. Различные конформации одной и той же молекулы легко и обратимо переходят друг в друга, чем объясняются отсутствие изомеров вращения и переход молекул в форму, наиболее соответствующую для протекания той или иной реакции.

Распределение электронов в молекулах находят главным образом с помощью теоретических расчетов, в основе которых лежат два основных принципа квантовой химии. Первый из них утверждает, что электроны в атомах и молекулы могут находиться лишь на дискретных и совершенно определенных энергетических уровнях. Согласно второму принципу электроны в атомах и молекулы нельзя рассматривать как точечные частицы, положение и скорость которых в молекуле (или атоме) можно точно определить для каждого момента времени. В действительности, как учит квантовая механика, можно определить лишь вероятность нахождения электрона в некоторых областях пространства в данный момент времени. Поэтому можно представить, что заряд электрона как бы «размазан» в определенной области пространства в виде электронного облака, распределение которого в пространстве определяется соответствующей математической функцией (называемой волновой функцией электрона или его молекулярной орбиталью (или атомной орбиталью, если его распределение определяют в атоме).

Выло показано, что не все электроны в молекуле одинаково существенны для ее химических свойств. Так, например, в молекуле с большим числом двойных связей, к которым относится подавляющее большинство соединений, играющих доминирующую роль в процессах жизнедеятельности, электроны можно разделить на два типа. К первому типу относятся σ-электроны, участвующие в образовании ординарных связей, ко второму - п-электроны, участвующие в образовании двойных связей. Первые образуют жесткий скелет молекулы и локализованы попарно между соседними атомами. Вторые образуют значительно более расплывчатое облако, охватывающее всю периферию молекулы. В таких молекулах все основные их свойства обусловлены п-электронами, которые более лабильны сравнительно с σ-электронами и поэтому с большей легкостью могут участвовать в различного рода процессах.

Когда два или более атома вступают в химические связи друг с другом, возникают молекулы. При этом не имеет значения, являются ли эти атомы одинаковыми или они вовсе отличаются друг от друга как по форме, так и по своему размеру. Мы с вами разберемся, какова величина молекул и от чего это зависит.

Что такое молекулы?

На протяжении тысячелетий ученые размышляли о тайне жизни, о том, что именно происходит при ее зарождении. Согласно самым древним культурам, жизнь и все-все в этом мире состоит из основных элементов природы - земли, воздуха, ветра, воды и огня. Однако со временем многие философы начали выдвигать идею, что все вещи состоят из крошечных, неделимых вещей, которые не могут быть созданы и уничтожены.

Однако только после появления атомной теории и современной химии ученые начали постулировать, что частицы, взятые в совокупности, породили основные строительные блоки всех вещей. Так появился термин, который в контексте современной теории частиц относится к мельчайшим единицам массы.

По своему классическому определению, молекула - это наименьшая частица вещества, которая помогает сохранять его химические и физические свойства. Она состоит из двух или более атомов, а также групп одинаковых или разных атомов, удерживаемых вместе химическими силами.

Какова величина молекул? В 5 классе природоведение (школьный предмет) дает лишь общее представление о размерах и формах, более подробно этот вопрос изучается в старших классах на уроках химии.

Примеры молекул

Молекулы могут быть простыми или сложными. Вот некоторые примеры:

  • H 2 O (вода);
  • N 2 (азот);
  • O 3 (озон);
  • CaO (оксид кальция);
  • C 6 H 12 O 6 (глюкоза).

Молекулы, состоящие из двух или более элементов, называются соединениями. Так, вода, оксид кальция и глюкоза являются составными. Не все соединения являются молекулами, но все молекулы являются соединениями. Насколько большими они могут быть? Какова величина молекулы? Известен тот факт, что почти все вокруг нас состоит из атомов (кроме света и звука). Их общий вес и будет составлять массу молекулы.

Молекулярная масса

Говоря о том, какова величина молекул, большинство ученых отталкиваются от молекулярной массы. Это общий вес всех входящих в нее атомов:

  • Вода, состоящая из двух атомов водорода (имеющих по одной единице атомной массы) и одного атома кислорода (16 единиц атомной массы), имеет молекулярный вес 18 (точнее, 18,01528).
  • Глюкоза имеет молекулярную массу 180.
  • ДНК, которая является очень длинной, может иметь молекулярную массу, которая составляет около 1010 (приблизительный вес одной человеческой хромосомы).

Измерение в нанометрах

В дополнение к массе мы также можем измерить, какова величина молекул в нанометрах. Единица воды составляет около 0,27 Нм в поперечнике. ДНК достигает 2 Нм в поперечнике и может растягиваться до нескольких метров в длину. Трудно себе представить, как такие размеры могут умещаться в одной клетке. Соотношение длины и толщины ДНК удивительно. Оно составляет 1/100 000 000, это как человеческий волос с длиной в футбольное поле.

Формы и размеры

Какова величина молекул? Они бывают разных форм и размеров. Вода и углекислый газ при этом являются одними из самых маленьких, белки - одними из самых больших. Молекулы - это элементы, состоящие из атомов, которые связаны друг с другом. Понимание внешнего вида молекул традиционно является частью химии. Помимо их непостижимо странного химического поведения, одной из важных характеристик молекул является их размер.

Где может быть особенно полезным знание о том, какова величина молекул? Ответ на этот и многие другие вопросы помогает в сфере нанотехнологий, так как концепция нанороботов и интеллектуальных материалов обязательно имеет дело с эффектами молекулярных размеров и форм.

Какова величина молекул?

В 5 классе природоведение по этой теме дает только общую информацию, что все молекулы состоят из атомов, которые находятся в постоянном беспорядочном движении. В старших классах можно уже увидеть структурные формулы в учебниках химии, которые напоминают действительную форму молекул. Однако невозможно измерить их длину с помощью обычной линейки, а чтобы это сделать, нужно знать, что молекулы представляют собой трехмерные объекты. Их изображение на бумаге является проекцией на двумерную плоскость. Длина молекулы изменяется с помощью связей длин ее углов. Существуют три основных:

  • Угол тетраэдра 109°, когда все связи этого атома со всеми другими атомами являются одинарными (только одно тире).
  • Угол шестиугольника 120°, когда один атом имеет одну двойную связь с другим атомом.
  • Угол линии 180°, когда атом имеет либо две двойные связи, либо одну тройную с другим атомом.

Реальные углы часто отличаются от этих углов, так как необходимо учитывать целый ряд разнообразных эффектов, в том числе электростатические взаимодействия.

Как представить себе размер молекул: примеры

Какова величина молекул? В 5 классе ответы на этот вопрос, как мы уже говорили, носят общий характер. Школьники знают, что размер названных соединений очень маленький. Вот, например, если превратить молекулу песка в одной единственной песчинке в целую песчинку, то под получившейся массой можно было бы спрятать дом в пять этажей. Какова величина молекул? Краткий ответ, которой также является и более научным, имеет следующий вид.

Молекулярная масса приравнивается к отношению массы всего вещества к количеству молекул в веществе или отношению молярной массы к постоянной Авогадро. Единицей измерения является килограмм. В среднем молекулярная масса составляет 10 -23 -10 -26 кг. Возьмем, например, воду. Ее молекулярная масса будет 3 х 10 -26 кг.

Как размер молекулы влияет на силы притяжения?

Ответственной за притяжение между молекулами является электромагнитная сила, которая проявляется через притяжение противоположных и отталкивание подобных зарядов. Электростатическая сила, которая существует между противоположными зарядами, доминирует во взаимодействиях между атомами и между молекулами. Гравитационная сила настолько мала в этом случае, что ею можно пренебречь.

При этом размер молекулы влияет на силу притяжения через электронное облако случайных искажений, возникающих при распределении электронов молекулы. В случае неполярных частиц, проявляющих только слабые ван-дер-ваальсовые взаимодействия или дисперсионные силы, размер молекул оказывает прямое влияние на величину электронного облака, окружающего указанную молекулу. Чем она больше, тем больше и заряженное поле, которое ее окружает.

Большее электронное облако означает, что между соседними молекулами может происходить больше электронных взаимодействий. В результате одна часть молекулы развивает временный положительный частичный заряд, а другая - отрицательный. Когда это происходит, молекула может поляризовать электронное облако у соседней. Притяжение происходит потому, что частичная положительная сторона одной молекулы притягивается к частичной отрицательной стороне другой.

Заключение

Итак, какова величина молекул? В природоведении, как мы выяснили, можно найти лишь образное представление о массе и размерах этих мельчайших частиц. Но мы знаем, что есть простые и сложные соединения. И ко вторым можно отнести такое понятие, как макромолекула. Это очень большая единица, например белок, которая обычно создается путем полимеризации меньших субъединиц (мономеров). Они обычно состоят из тысяч атомов или более.

Молекулой называют наименьшую частицу вещества, обладающую его химическими свойствами.

Молекула состоит из атомов, а точнее, из атомных ядер, окруженных внутренними электронами, тогда как внешние, валентные электроны участвуют в образовании химических связей.

А, например, в случае инертных газов понятия атома и молекулы совпадают.

Каждая молекула имеет определенный качественный и количественный состав. Так, молекула воды состоит из атомов водорода и кислорода (качественный состав), причем в ней содержится один атом кислорода и два атома водорода (количественный состав). Иногда количественный состав молекул выражают в процентах (по массе): в Н2O-11,1% водорода и 88,9% кислорода.

Кроме состава молекулы характеризуются определенной структурой или строением. Часто термины «структура» и «строение» отождествляют, иногда же их различают, говоря о «ядерной структуре» и «электронном строении» молекул. Но в любом случае необходимо четко оговаривать, о чем идет речь: о взаимном расположении и перемещении атомных ядер или же о распределении электронной плотности.

Атомы в молекулах связаны в определенном порядке. Так, в молекуле аммиака NH3 каждый атом водорода соединен одной ковалентной связью с атомом азота; между самими водородными атомами химическая связь отсутствует (последнее, правда, не означает, что между химически несвязанными атомами отсутствует вообще всякое взаимодействие (см. Химическая связь). Наличие связей между одними атомами и отсутствие их между другими изображают в виде так называемых графических, или структурных, формул.

В последнее время в химической литературе все чаще употребляют термин «топология молекул». Топология - это раздел математики, изучающий свойства тел, не зависящие от их формы и размеров. Эти свойства называют неметрическими. Молекулы обладают как метрическими свойствами (длины химических связей, углы между ними и др.), так и неметрическими (молекула может быть циклической, скажем бензол, или нециклической, я-бутан; иметь центральный атом, окруженный лигандами,- PCl5, или представлять собой как бы «клетку» и т. д.). Под топологией молекулы понимают совокупность ее неметрических свойств.

Топология молекулярных систем тесно связана с их свойствами. Например, молекулы этанола и ди-метилового эфира топологически различны, что позволяет понять разницу в некоторых свойствах этих соединений (этанол может давать реакции с участием группы ОН и водорода этой группы, эфир - нет и т. д.). Но свойства молекул зависят не только от их топологии, но и от других факторов (геометрии молекулы, распределения электронной плотности в ней и др., см. Стереохимия).

В последние годы внимание ученых привлек новый класс молекулярных систем - так называемые нежесткие молекулы. Как известно, ядра в молекулах движутся. В силу резкого различия в массах ядер и электронов ядерные движения (колебания) происходят намного медленнее электронных, поэтому можно считать, что электроны в молекулах движутся в поле неподвижных атомных ядер. Конечно, такое допущение является приближением, которое называется адиабатическим. Для многих молекул, где ядра совершают небольшие по амплитуде колебания около определенных положений в пространстве, адиабатическое приближение вполне приемлемо. Такие молекулы называют структурно-жесткими, например СН4, Н2O и т. д. Однако есть молекулы, их называют нежесткими, в которых ядра совершают значительные перемещения. В подобных случаях понятие о неизменной равновесной геометрии молекулы теряет смысл. Например, в борогидриде лития LiBH4 катион Li+ как бы обращается вокруг аниона ВН4 (см. рис. на с. 146, в середине, справа). Разумеется, чтобы ион Li+ смог начать подобное «путешествие», молекула должна получить определенную энергию. Для нежестких молекул эта энергия невелика: для LiBH4 она составляет около 16 кДж/моль, т. е. во много раз меньше энергии химической связи. Другим примером нежесткой молекулы может служить аммиак NH3. Возвращаясь к «обычным», жестким молекулам, следует отметить, что при одном и том же составе они могут иметь различную топологию и геометрию, т. е. давать разного типа изомеры (см. Изомерия; Таутомерия).

Структура и даже состав молекул могут изменяться при изменении агрегатного состояния вещества и внешних условий, главным образом температуры и давления. Например, в газообразном оксиде азота (V) существуют отдельные молекулы N2O5, тогда как в твердом состоянии в узлах кристаллической решетки этого оксида находятся ионы NO2+ и NO3 , т. е. можно сказать, что твердый N2O5 - это соль - нитрат нитрония.

В твердом теле молекулы могут сохранять или не сохранять свою индивидуальность. Так, большинство органических соединений образуют молекулярные кристаллы, в узлах решеток которых находятся молекулы, связанные друг с другом относительно слабыми межмолекулярными взаимодействиями. В ионных (например, NaCl) и атомных (алмаз, графит) кристаллах нет отдельных молекул, и весь кристалл - это как бы одна гигантская молекула. Правда, в последнее время в теории твердого тела начали широко использовать молекулярные модели, однако это потребовало некоторого пересмотра понятия элементарной ячейки кристалла (см. Кристаллохимия).

Изучение строения и свойств молекул имеет фундаментальное значение для естествознания в целом.