Что такое графический метод решения системы уравнений. Урок «Графический способ решения систем уравнений

На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.

Тема: Системы уравнений

Урок: Графический метод решения системы уравнений

Рассмотрим систему

Пару чисел которая одновременно является решением и первого и второго уравнения системы, называют решением системы уравнений .

Решить систему уравнений - это значит найти все её решения, или установить, что решений нет. Мы рассмотрели графики основных уравнений, перейдем к рассмотрению систем.

Пример 1. Решить систему

Решение:

Это линейные уравнения, графиком каждого из них является прямая. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и есть решение системы уравнений (Рис. 1).

Решением системы является пара чисел Подставив эту пару чисел в каждое уравнение, получим верное равенство.

Мы получили единственное решение линейной системы.

Вспомним, что при решении линейной системы возможны следующие случаи:

cистема имеет единственное решение - прямые пересекаются,

система не имеет решений - прямые параллельны,

система имеет бесчисленное множество решений - прямые совпадают.

Мы рассмотрели частный случай системы, когда p(x; y) и q(x; y) - линейные выражения от x и y.

Пример 2. Решить систему уравнений

Решение:

График первого уравнения - прямая, график второго уравнения - окружность. Построим первый график по точкам (Рис. 2).

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в т. А(0; 1) и т. В(-1; 0).

Пример 3. Решить систему графически

Решение: Построим график первого уравнения - это окружность с центром в т.О(0; 0) и радиусом 2. График второго уравнения - парабола. Она сдвинута относительно начала координат на 2 вверх, т.е. ее вершина - точка (0; 2) (Рис. 3).

Графики имеют одну общую точку - т. А(0; 2). Она и является решением системы. Подставим пару чисел в уравнение, чтобы проверить правильность.

Пример 4. Решить систему

Решение: Построим график первого уравнения - это окружность с центром в т.О(0; 0) и радиусом 1 (Рис. 4).

Построим график функции Это ломаная (Рис. 5).

Теперь сдвинем ее на 1 вниз по оси oy. Это и будет график функции

Поместим оба графика в одну систему координат (Рис. 6).

Получаем три точки пересечения - т. А(1; 0), т. В(-1; 0), т. С(0; -1).

Мы рассмотрели графический метод решения систем. Если можно построить график каждого уравнения и найти координаты точек пересечения, то этого метода вполне достаточно.

Но часто графический метод даёт возможность найти только приближенное решение системы или ответить на вопрос о количестве решений. Поэтому нужны и другие методы, более точные, и ими мы займемся на следующих уроках.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Раздел College.ru по математике ().

2. Интернет-проект «Задачи» ().

3. Образовательный портал «РЕШУ ЕГЭ» ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 105, 107, 114, 115.

Графический способ решения систем уравнений

(9-й класс)

Учебник: Алгебра, 9 класс, под редакцией Теляковского С.А.

Тип урока: урок комплексного применения знаний, умений, навыков.

Цели урока:

Образовательные: Выработать умение самостоятельно применять знания в комплексе, переносить их в новые условия, в том числе работать с компьютерной программой для построения графиков функции и нахождения количества корней в заданных уравнениях.

Развивающие : Формировать у учащихся умение выделять основные признаки, устанавливать сходства и различия. Обогащать словарный запас. Развивать речь, усложняя её смысловую функцию. Развивать логическое мышление, познавательный интерес, культуру графического построения, память, любознательность.

Воспитательные : Воспитывать чувство ответственности за результат своего труда. Учить сопереживать успехам и неудачам одноклассников.

Средства обучения : компьютер, мультимедийный проектор, раздаточный материал.

План урока:

    Организационный момент. Домашнее задание – 2 мин.

    Актуализация, повторение, коррекция знаний - 8 мин.

    Изучение нового материала – 10 мин.

    Практическая работа – 20 мин.

    Подведение итогов – 4 мин.

    Рефлексия – 1 мин.

ХОД УРОКА

    Организационный момент – 2 мин.

Здравствуйте, ребята! Сегодня урок по важной теме: «Решение систем уравнений».

Нет таких областей знаний в точных науках, где бы ни применялась данная тема. Эпиграфом к нашему уроку являются следующие слова: «Ум заключается не только в знании, но и в умении прилагать знания на деле ». (Аристотель)

Постановка темы, целей и задач урока.

Учитель сообщает классу о том, что на уроке будет изучаться и ставит задачу научиться решать системы уравнений с двумя переменными графическим способом.

Задание на дом (П.18 № 416, 418, 419 а).

    Повторение теоретического материала – 8 мин.

А) Учитель математики: По готовым чертежам ответить на вопросы и обосновать свой ответ.

1). Найти график квадратичной функции D =0 (Учащиеся отвечают на вопрос и называют график 3в).

2). Найти график обратно - пропорциональной функции при k >0 (Учащиеся отвечают на вопрос, называют график 3 a ).

3). Найти график окружности с центром O (-1; -5). (Учащиеся отвечают на вопрос, называют график 1б).

4). Найти график функции y =3x -2. (Учащиеся отвечают на вопрос и называют график 3б).

5). Найти график квадратичной функции D >0, a >0. (Учащиеся отвечают на вопрос и называют график 1 a ).

Учитель математики: Для того, что бы успешно решать системы уравнений, давайте вспомним:

1). Что называется системой уравнений? (Системой уравнений называется несколько уравнений, для которых требуется найти значения неизвестных, удовлетворяющих одновременно всем этим уравнениям).

2). Что значит решить систему уравнений? (Решить систему уравнений, значит найти все решения или доказать, что решений нет).

3). Что называется решением системы уравнений? (Решением системы уравнений называют пару чисел (x; у), при которой все уравнения системы обращаются в верные равенства).

4) Выясните, является ли решением системы уравнений
пара чисел: а) х = 1, у = 2; (–) б) х = 2, у = 4; (+) в) х = – 2, у = – 4? (+)

III Новый материал – 10 мин.

П.18 учебника излагается методом беседы .

Учитель математики: В курсе алгебры 7 класса мы рассматривали системы уравнений первой степени. Теперь займёмся решением систем, составленных из уравнений первой и второй степени.

1.Что называется системой уравнений?

2.Что значит решить систему уравнений?

Мы знаем, что алгебраический способ позволяет находить точные решения системы, а графический способ позволяет наглядно увидеть, сколько корней имеет система и найти их приблизительно. Поэтому учиться решать системы уравнений второй степени мы продолжим на следующих уроках, а сегодня основной целью урока будет практическое применение компьютерной программы для построения графиков функции и нахождения количества корней систем уравнений.

IV . Практическая работа – 20 мин. Решение систем уравнений графическим способом. Определение корней уравнений. (Построение графика на компьютере.)

Задания выполняются учащимися на компьютерах. Решения проверяются во время работы.

y = 2x 2 + 5x +3

y = 4

y = -2x 2 +5х+3

y = -3x + 4

y = -2x 2 -5х-3

y = -4+2x

y = 4x 2 + 5x +3

y = 2

y = -4 x 2 +5х+3

y = -3x + 2

y = -4x 2 -5х-3

y = -2+2x

y = 4 x 2 + 5 x +5

y = 3

y = -4x 2 +5х+5

y = -x + 3

y = -4x 2 -5х-5

y = -2+3x

Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение.

Какие из перечисленных систем можно решать с помощью данного рисунка?

Были даны 4 системы, их нужно было соотнести с графиками. Сейчас задание обратное: есть графики , их нужно соотнести с системой.

    1. Подведение итогов урока. Выставление оценок– 4 мин.

* Решение систем уравнений. (Задания со звёздочкой* .)

Уравнения для 1-й группы учащихся:

Уравнения для 2-й группы учащихся:

Уравнения для 3-й группы учащихся:

x y = 6

x 2 + y = 4

x 2 + y = 3

x - y + 1= 0

x 2 - y = 3

Муниципальное казенное общеобразовательное учреждение

Поповская средняя общеобразовательная школа

имени Героя Советского Союза Н.К. Горбанева

Открытый урок

учителя математики

Ворониной Веры Владимировны,

по математике в 9 классе

по теме: «Графический способ решения систем уравнений»

Тип урока: урок изучения нового материала.

2017/2018 учебный год

Графический способ решения систем уравнений. 9-й класс

Воронина Вера Владимировна, учитель математики.

ли урока:

дидактические:

открыть совместнос учащимися новый способ решения систем уравнений;

вывести алгоритм решения систем уравнений графическим способом;

уметь определять сколько решений имеет система уравнений;

учить находить решения системы уравнений графическим способом;

повторить построение графиков элементарных функций;

создать условия для контроля (самоконтроля) учащихся:

воспитательные:

воспитание ответственного отношения к труду,

аккуратности ведения записей.

Ход урока.

I. Организационный момент.

Что такое функция? (слайд 3-11)

Что называется графиком функции?

Какие виды функций вы знаете?

Какой формулой задается линейная функция? Что является графиком линейной функции?

Какой формулой задается прямая пропорциональность? Что является ее графиком?

Какой формулой задается обратная пропорциональность? Что является ее графиком?

Какой формулой задается квадратичная функция? Что является ее графиком?

Каким уравнением задается уравнение окружности?

Что называют графиком уравнения с двумя переменными; (слайд 12)

Организуется знакомство с уравнениями, используемыми в высшей математике и их графиками (строфоидой, Лемнискатой Бернулли, астроидой, кардиоидой). (слайд 13-16)

Рассказ учителя сопровождается показом слайдов с данными графиками.

Выразите переменную у через переменную х:
а) у - х² = 0
б) х + у + 2 = 0
в) 2х - у + 3 = 0
г) ху = -12

Является ли пара чисел (1; 0) решением уравнения
а) х² +у = 1;
б) ху + 3 = х;
в) у(х +2) = 0.

Что является решением системы уравнений с двумя переменными?

Какая из пар чисел является решением системы уравнений
а) (6; 3)
б) (- 3; - 6)
в) (2; - 1)
г) (3; 0)

Из каких уравнений можно составить систему уравнений, решением которой будет пара чисел (2; 1)
а) 2х - у = 3
б) 3х - 2у = 5
в) х² + у² = 4
г) ху = 2

III. Актуализация знаний учащихся по изученному материалу . (слайд 20, 21)

Сегодня мы повторим и закрепим один из способов решения систем уравнений. Закрепление изученного материала осуществляется с помощью наглядного восприятия (на слайде представлено графическое решение системы уравнений):

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя неизвестными весьма разнообразны.

Вопросы по данному слайду:

Что является графиком уравнения x² + y²=25?

Что является графиком уравнения y = - x² +2x +5?

Координаты любой точки окружности будут удовлетворять уравнению x² + y²=25, координаты любой точки параболы будут удовлетворять уравнению y = - x² +2x +5.

Координаты каких точек будут удовлетворять и первому и второму уравнениям?

Сколько точек пересечения у данных графиков?

Сколько решений имеет данная система?

Назвать эти решения?

Что нужно сделать, чтобы графически решить систему уравнений с двумя переменными?

Предлагается слайд, на котором приведен алгоритм графического способа решения систем уравнений с двумя неизвестными.

Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы.

IV. Применение изученного способа решения систем уравнений.

1. Решить графически систему уравнений (слайд 23)

Что является графиком уравнения ху = 3?

Что является графиком уравнения 3х - у =0?

2. Запишите систему, определяемую этими уравнениями и ее решение. (слайд 24)

Постановка наводящих вопросов:

Запишите систему, определяемую данными уравнениями?

Сколько точек пересечения имеют данные графики?

Сколько решений имеет данная система уравнений?

Назвать решения данной системы уравнений?

3. Выполнение задание из ГИА (слайд 25).

4. Решить графически систему уравнений (слайд 26)

Задание выполняется учащимися в тетрадях. Решение проверяется.

V. Итоги урока.

Что называется решением системы уравнений с двумя переменными?

С каким способом решения систем уравнений с двумя переменными вы познакомились?

В чём его суть?

Дает ли данный способ точные результаты?

В каком случае система уравнений не будет иметь решений?

VI . Домашнее задание.

П. 18, №№ 420 (237), 425 (240)

Начальный уровень

Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно намного легче и быстрее решить, в этом нам поможет использование графиков функций. Ты скажешь «как так?» чертить что-то, да и что чертить? Поверь мне, иногда это удобнее и проще. Приступим? Начнем с уравнений!

Графическое решение уравнений

Графическое решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем - все неизвестные переносим в одну сторону уравнения, все, что нам известно - в другую и вуаля! Мы нашли корень. Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение:

Как его решить?
Вариант 1 , и самый распространенный - перенести неизвестные в одну сторону, а известные в другую, получаем:

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата точки пересечения графиков:

Наш ответ -

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число!

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так как они сейчас есть:

Построил? Смотрим!

Что является решением на этот раз? Все верно. Тоже самое - координата точки пересечения графиков:

И, снова наш ответ - .

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее... Например, графическое решение квадратных уравнений.

Графическое решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при переумножении или в возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет… Поэтому, давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Способ 1. Напрямую

Просто строим параболу по данному уравнению:

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни. Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец! И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, .

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе. Для нашего случая точка. Нам необходимо еще две точки, соответственно, можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней? Мне удобней работать с положительными, поэтому я рассчитаю при и.

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения? Правильно, точки, в которых, то есть и. Потому что.

И если мы говорим, что, то значит, что тоже должен быть равен, или.

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем - посчитаешь корни через теорему Виета или Дискриминант. Что у тебя получилось? То же самое? Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Способ 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: , но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

  1. - графиком является простая парабола, которую ты с легкостью построишь даже без определения вершины с помощью формул и составления таблицы для определения прочих точек.
  2. - графиком является прямая, которую ты так же легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Построил? Сравним с тем, что вышло у меня:

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по, которые получились при пересечении двух графиков и, то есть:

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий и даже легче, чем искать корни через дискриминант! А если так, попробуй данным способом решить следующее уравнение:

Что у тебя получилось? Сравним наши графики:

По графикам видно, что ответами являются:

Справился? Молодец! Теперь посмотрим уравнения чууууть-чуть посложнее, а именно, решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Графическое решение смешанных уравнений

Теперь попробуем решить следующее:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы опять же, попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  1. - графиком является гипербола
  2. - графиком является прямая, которую ты легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:

Глядя на этот рисунок, скажи, что является корнями нашего уравнения?

Правильно, и. Вот и подтверждение:

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

Соответственно:

  1. - кубическая парабола.
  2. - обыкновенная прямая.

Ну и строим:

Как ты уже давно у себя записал, корнем данного уравнения является - .

Прорешав такое большое количество примеров, уверена, ты осознал как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Графическое решение систем

Графическое решение систем по сути ничем не отличается от графического решения уравнений. Мы так же будем строить два графика,и их точки пересечения и будут являться корнями данной системы. Один график - одно уравнение, второй график - другое уравнение. Все предельно просто!

Начнем с самого простого - решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с, а справа - что связано с. Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему? Намекну: мы имеем дело с системой: в системе есть и, и … Намек понял?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только, как при решении уравнений! Еще один важный момент - правильно их записать и не перепутать, где у нас значение, а где значение! Записал? Теперь давай все сравним по порядку:

И ответы: и. Сделай проверку - подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым - построил быстренько и вот тебе решение! Строим:

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее:

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Так же? Теперь аккуратно запиши все решения нашей системы:

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут? Согласись, математика - это все-таки просто, особенно, когда глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Графическое решение неравенств

Графическое решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни - по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно с графического решения линейного неравенства. Например, вот этого:

Для начала проведем простейшие преобразования - раскроем скобки полных квадратов и приведем подобные слагаемые:

Неравенство нестрогое, поэтому - не включается в промежуток, и решением будут являться все точки, которые находятся правее, так как больше, больше и так далее:

Ответ:

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Нарисуем в системе координат функцию.

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой. А если было бы больше? Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Все решения данного неравенства «затушеваны» оранжевым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области - и есть решения.

Графическое решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции.

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Теперь, когда мы освежили в памяти весь материал, перейдем к делу - решим графически неравенство.

Сразу тебе скажу, что есть два варианта его решения.

Вариант 1

Записываем нашу параболу как функцию:

По формулам определяем координаты вершины параболы (точно так же, как и при решении квадратных уравнений):

Посчитал? Что у тебя получилось?

Теперь возьмем еще две различных точки и посчитаем для них:

Начинаем строить одну ветвь параболы:

Симметрично отражаем наши точки на другую ветвь параболы:

А теперь возвращаемся к нашему неравенству.

Нам необходимо, чтобы было меньше нуля, соответственно:

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем - «выкалываем».

Ответ:

Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства:

Вариант 2

Возвращаемся к нашему неравенству и отмечаем нужные нам промежутки:

Согласись, это намного быстрее.

Запишем теперь ответ:

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Умножим левую и правую части на:

Попробуй самостоятельно решить следующее квадратное неравенство любым понравившимся тебе способом: .

Справился?

Смотри, как график получился у меня:

Ответ: .

Графическое решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, это с построения двух графиков:

Я не буду расписывать для каждого таблицу - уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично! Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть. Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси у нас находится выше, чем? Верно, . Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

КОРОТКО О ГЛАВНОМ

Алгоритм решения уравнений с использованием графиков функций:

  1. Выразим через
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Более подробно о построении графиков функций, смотри в теме « ».

, Конкурс «Презентация к уроку»

Презентация к уроку















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Обобщить графический способ решения систем уравнений;
  • Сформировать умения графически решать системы уравнений второй степени, привлекая известные учащимся графики;
  • Дать наглядные представления, что система двух уравнений с двумя переменными второй степени может иметь от одного до четырех решений, или не иметь решений.

Структура урока:

  1. Орг. момент
  2. Актуализация знаний учащихся.
  3. Объяснение нового материала.
  4. Закрепление изученного материала. Работа в табличном процессоре Excel с последующей проверкой..
  5. Домашнее задание.

Ход урока

1. Организационный момент

Объявляется тема, цель, ход урока.

2. Актуализация знаний.

1) Повторить элементарные функции и их графики.

Учитель математики задает вопрос об изученных ранее элементарных функциях и их графиках и через проектор обобщает ответы учащихся.

2) Устная работа.

Учитель проводит устную работу с использованием проектора с целью подготовки учащихся к восприятию новой темы.

3. Объяснение нового материала.

1) Объяснение нового материала через проектор и разбор решения стандартной математической задачи.

2) Учитель информатики и ИКТ через проектор напоминает учащимся алгоритм решения системы уравнений графическим способом в табличном процессоре Excel.

4. Закрепление изученного материала. Работа в табличном процессоре Excel с последующей проверкой.

1) Учитель предлагает учащимся пересесть за компьютеры и выполнить задания в табличном процессоре Excel.

2) Решение каждой системы уравнений проверяется через проектор.

5. Домашнее задание.

Список используемой литературы:

  1. Учебник для 9 класса общеобразовательных учреждений «Алгебра», авторы Ю.Н. Макарычев Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, «Просвещение», ОАО «Московские учебники», Москва, 2008 г.
  2. Поурочное планирование по алгебре к учебнику Ю.Н.Макарычева и др. «Алгебра. 9 класс», «Экзамен», Москва, 2008 г.
  3. Алгебра. 9 класс. Поурочные планы к учебнику Ю.Н.Макарычева и др., автор-составитель С.П.Ковалева, Волгоград, 2007 г.
  4. Тетрадь-конспект по алгебре, авторы Ершова А.П., Голобородько В.В., Крижановский А.Ф., ИЛЕКСА, Москва, 2006 г.
  5. Учебник Информатика. Базовый курс. 9 класс, автор Угринович Н.Д., БИНОМ. Лаборатория знаний, 2010 г.
  6. Современные открытые уроки информатики 8-11 классы, авторы В.А. Молодцов, Н.Б. Рыжикова, Феникс, 2006 г.