Людской поток. Учебное пособие: Расчет времени эвакуации Поверхностная плотность теплового потока

Методики

Упрощенная аналитическая модель движения людского потока (определение расчетного времени эвакуации людей из помещений и зданий по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей)

С изменениями и дополнениями от:

Расчетное время эвакуации людей из помещений и зданий устанавливается по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной и шириной . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени эвакуации людей длину и ширину каждого участка пути эвакуации для проектируемых зданий принимают по проекту, а для построенных - по фактическому положению. Длину пути по лестничным маршам, а также по пандусам измеряют по длине марша. Длину пути в дверном проеме принимают равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельными участками горизонтального пути, имеющими конечную длину .

Расчетное время эвакуации людей следует определять как сумму времени движения людского потока по отдельным участкам пути по формуле:

, (П2.1)

где - время движения людского потока на первом (начальном) участке, мин;

Время движения людского потока на каждом из следующих после первого участка пути, мин.

Время движения людского потока по первому участку пути , мин, рассчитывают по формуле:

где - длина первого участка пути, м;

Скорость движения людского потока по горизонтальному пути на первом участке, м/мин (определяется по таблице П2.1 в зависимости от плотности D).

Плотность однородного людского потока на первом участке пути рассчитывают по формуле:

где - число людей на первом участке, чел.;

f - средняя площадь горизонтальной проекции человека, . принимаемая в соответствии с пунктами 4 , приложения N 5 к настоящей Методике;

Ширина первого участка пути, м.

Скорость движения людского потока на участках пути, следующих после первого, принимают по таблице П2.1 в зависимости от интенсивности движения людского потока по каждому из этих участков пути, которую вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

, (П2.4)

где , - ширина рассматриваемого i-го и предшествующего ему участка пути, м;

Интенсивности движения людского потока по рассматриваемому i-му и предшествующему участкам пути, м/мин (интенсивность движения людского потока на первом участке пути определяется по таблице П2.1 по значению , установленному по формуле (П2.3)).

Если значение , определяемое по формуле (П2.4) , меньше или равно , то время движения по участку пути , мин, равно:

при этом значения , м/мин следует принимать равными:

16,5 - для горизонтальных путей;

19,6 - для дверных проемов;

16,0 - для лестницы вниз;

11,0 - для лестницы вверх.

Если значение , определенное по формуле (П2.4) , больше то ширину данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:

При невозможности выполнения условия (П2.6) интенсивность и скорость движения людского потока по участку i определяют по таблице П2.1 при значении D = 0,9 и более. При этом следует учитывать время задержки движения людей из-за образовавшегося их скопления.

Таблица П2.1

Интенсивность и скорость движения людского потока на разных участках путей эвакуации в зависимости от плотности

Плотность потока D,

Горизонтальный путь

Дверной проем, интенсивность q, м/мин

Лестница вниз

Лестница вверх

Скорость

Интенсивность q, м/мин

Скорость

Интенсивность q, м/мин

Скорость

Интенсивность q, м/мин

ЛЮДСКОЙ ПОТОК

3.1. Особенности движения людей в составе потока

3.2. Плотность людского потока

3.3. Скорость движения людского потока

3.4. Интенсивность движения

3.5. Пропускная способность участка пути

3.1. Особенности движения людей в составе потока

Приняв решение об эвакуации, человек выходит на начальный участок эвакуационного пути. Это может быть проход между рабочими местами или оборудованием, проход между рядами зрительных мест, свободное пространство около места нахождения человека, соединяющие его с выходами из помещения. Одновременно с ним на этот участок могут выходить и другие люди. Они выбирают направление движения к тому или иному выходу и тем самым определяют маршрут своего движения, то есть последовательность участков эвакуационных путей, которые они должны пройти для того, чтобы попасть в безопасное место. Множество людей, одновременно идущих по общим путям в одном направлении, образует людские потоки.

Несмотря на очевидность такого определения, оно не определяет ни структуры, ни характеристик людского потока как процесса, явно имеющего социальную природу и показатели, далекие от привычных при описании физико-технических явлений (потоков жидкостей, электрического тока, сыпучих веществ и т. п.). Вероятно, именно эти различия и объясняют тот факт, что этот веками наблюдаемый процесс не получил технического описания, пригодного для использования при проектировании коммуникационных путей и для разработки мероприятий по обеспечению безопасности эвакуации людей в чрезвычайных ситуациях.

По-видимому, непростая для человеческого восприятия структура людского потока определила первоначальное его описание как массы людей, состоящей из рядов идущих в затылок друг другу людей – «элементарных потоков» . Такая модель быстрее соответствует воинскому подразделению на марше, чем неорганизованному перемещению людей, обгоняющих друг друга или идущих каждый в своем темпе и со своими целями.

Потребовались долговременные многочисленные натурные наблюдения людских потоков и теоретические исследования, основанные на их результатах, прежде чем сформировалось современное представление

о структуре и характеристиках людского потока, отражающее его суть в технических параметрах процесса. Имеющиеся методы фиксации параметров людского потока приведены на рис. 3.1.

Поток людей

Заметный человек

Рис. 3.1. Методы фиксации данных в натурных наблюдениях и экспериментах:

а – визуальный; б – кино-фотосъемка; в – учет перспективных искажений;

г – пример кинограммы движения людей

Натурные наблюдения показывают, что людской поток обычно имеет вытянутую сигарообразную форму (рис. 3.2).

Направление движения

Рис. 3.2. Схема людского потока:

1 – головная часть; 2 – основная; 3 – замыкающая

«Размещение людей в потоке (как по длине, так и по ширине) имеет всегда неравномерный и часто случайный характер. Расстояние между идущими людьми постоянно меняется, возникают местные уплотнения, которые затем рассасываются и возникают снова. Эти изменения неустойчивые во времени…» . Следовательно, на участке, занимаемом потоком, могут образовываться части с различными параметрами. При этом головная

и замыкающая части состоят из небольшого числа людей, двигающихся, соответственно, с большей или меньшей скоростью, чем основная масса людей в потоке. При эвакуации головная часть потока уходит с большей скоростью вперед, и по длине и числу людей возрастает, а замыкающая часть, наоборот, уменьшается.

Ширина потока b , как правило, обусловливается свободной для движения шириной участка, ограниченного ограждающими конструкциями, которые нарушают равномерность распределения людей в потоке, поскольку между ограждающими конструкциями и потоком людей при движении всегда образуются зазоры Δδ, соблюдаемые людьми из-за неизбежного раскачивания при ходьбе и опасения задеть конструкцию или какую-нибудь выступающую ее деталь. Поэтому движение людей в середине потока происходит при большей плотности, чем по его краям. Ширина пространства, которое людской поток использует для движения, называют шириной потока или эффективной шириной участка пути . Величины зазора, на которые уменьшается эффективная ширина участков различных видов пути в свету, приведены в табл. 3.1. Однако в дальнейшем, для упрощения изложения материала, ширину потока будем принимать равной ширине участка.

Таблица 3.1

Разница между эффективной шириной и шириной в свету участков различных видов пути

Величина зазора Δδ, см

Лестничный марш с оградой, перилами

Проход между кресел в зрительном

или спортивном зале

Коридор, пандус

Препятствие

Дверной проем, проем

Движение людей в потоке не прямолинейно и имеет сложную траекторию, что иллюстрирует кинограмма, приведенная на рис. 3.1 г .

Наблюдаемыми параметрами людского потока являются: количество людей в потоке N; плотность D ; скорость V ; величина потока Р .

3.2. Плотность людского потока

Плотность людского потока D , чел/м2 , – отношение количества людей в потоке N к площади занимаемого им участка, имеющего ширину b (для простоты вычислений ширину потока принимают равной ширине участка) и длину l :

Диапазон возможных плотностей проиллюстрирован на рис. 3.3.

Рис. 3.3. Иллюстрация значений плотностей людского потока

Плотность потока определяет свободу движения людей в нем, и, как следствие, соответствующий уровень комфортности людей. В зависимости от значений плотности предложено различать несколько уровней комфортности людей в потоке (табл. 3.2) .

Свободное пространство в потоке зависит не только от количества человек, но и от площади, занимаемой каждым из них, поэтому определенную роль играют габариты людей, рис. 3.4.

Для учета габаритов людей было предложено вводить в расчет плотности потока площадь, занимаемую человеком (его горизонтальную проекцию f , м2 , см. Прил. 3) :

М2 /м2 . (3.2)

Формой горизонтальной проекции человека принят эллипс, диаметры которого соответствуют ширине и толщине тела человека (рис. 3.5 а ). Площадь эллипса f = 0,25πac .

Таблица 3.2

Характеристики уровней комфортности

Плотность,

Расстояние между

Характеристика уровня

чел/м2

комфорта

людьми, м

Горизонтальная поверхность. Движение

Свобода движения и выбора направлений.

Небольшие конфликты

Свобода движения и выбора направлений

ограничена

Скорость движения ограничена. Наиболее

высокая плотность для общественных зданий

Скорость движения ограничена, наблюдается

частое изменение ритма движения. Движение

вперед с высокой скоростью возможно только

маневрированием. Существование такой

плотности допускается только на короткие

интервалы времени

Скорость движения крайне ограничена.

Движение вперед с высокой скоростью

возможно только маневрированием. Частые

неизбежные контакты с окружающими, потеря

контроля над ситуацией и нарушение

нормального функционирования

коммуникационного пути

Горизонтальная поверхность. Скопление, очередь, зона ожидания

Свободное движение в зоне ожидания

без контактов с окружающими

Ограниченное движение в зоне ожидания

с контактами с окружающими

Размещение без контактов с окружающими.

Движение в зоне ожидания ограничено

Размещение с контактами с окружающими

Физический

Тесный физический контакт с окружающими

Рис. 3.5. Площадь горизонтальной проекции человека:

а – расчетная; б – действительная

Следует отметить, что действительная форма горизонтальной проекции человека несколько отличается от эллипса (рис. 3.5 б ). Однако с учетом разнообразия физических данных и одежды принятое допущение несущественно искажает фактические размеры и форму горизонтальной проекции. Размеры людей изменяются в зависимости от физических данных, возраста и одежды. В таблицах и на рисунках Прил. 3 приводятся усредненные размеры людей разного возраста, в различной одежде и с различным грузом. Там же даны и значения площади горизонтальной проекции инвалидов с нарушением опорно-двигательного аппарата.

в фойе достигла критических значений 5,3 чел/м2 , а в некоторых местах

и до 7 чел/м 2 .

В рассмотренном случае никто не пострадал. Однако при возникновении чрезвычайной ситуации (или даже просто слухов о ней), он мог бы иметь трагические последствия. Безусловно, такие массовые мероприятия необходимо планировать заблаговременно.

Таблица 3.3

Инциденты с гибелью людей от компрессионной асфиксии

Количество

Место, мероприятие

погибших/

пострадавших

Россия, Москва, Трубная площадь,

Около 2000/–

похороны И. В. Сталина

Аргентина, Буэнос-Айрес, стадион

Россия, Москва, стадион

Мекка, хадж

Мекка, хадж

Гватемала, стадион

Мекка, хадж

Беларусь, Минск, вход в станцию метро

Бразилия, стадион

Западная Африка, Хана, стадион

Мекка, хадж

Индия, Вай, религиозное мероприятие

Багдад, религиозное мероприятие

Мекка, хадж

Филиппины, Манила, стадион

Индия, Раджастан, индуистский храм

Россия, Первоуральск, дискотека

Кот-д-Ивуар, футбольный матч

Нью-Дели, школа

Китай, провинция Хунань, школа

Рис. 3.6. Неудовлетворительная организация открытия магазина – давка в вестибюле торгового комплекса

Следует заметить, что нормативные документы некоторых стран, на-

пример США, в частности, п. 20.1.4.6 NFPA 1 Uniform Fire Code, требуют присутствия на массовых мероприятиях одного крауд-менеджера8 на каждые 250 человек. Более того, существуют специальные курсы для их подготовки. Тем не менее, для таких случаев должна быть проведена работа по следующим направлениям:

–  определение общего максимально допустимого числа людей на объекте;

–  определение площади, необходимой для размещения ожидаемого количества людей;

–  определение и исключение мест образования высоких травмоопасных плотностей (более 5 чел/м2 );

–  определениеоптимальныхинтерваловподходагрупплюдейсучетом пропускной способности участков пути;

–  оптимизация путей движения людей, исключающая пересечение, слияние и движение встречных людских потоков;

–  определение времени заполнения помещений (территории) и время выхода (эвакуация при возникновении ЧС);

–  предложение комплекса организационных мероприятий, исключающих образование паники.

Изменения плотности оказывают сильнейшее влияние и на характер движения людей в потоке, меняя его от свободного, при котором человек

8 От англ. crowd – толпа.

может выбирать скорость и направление своего движения, до стесненного в результате дальнейшего увеличения плотности потока, при котором он испытывает все возрастающие силовые воздействия окружающих его людей (табл. 3.4).

Таблица 3.4

Вид движения людей в интервалах плотности потоков

Значение

плотности,

м2 /м2

Индивидуальное

Поточное

С контакт-

С силовыми воздействиями

движения

Свободное

ными поме-

Очевидно, что ограничение возможностей движения человека в потоке при увеличении его плотности ведет к снижению скорости, которая определяет и расчетное время движения по рассматриваемому участку пути. Изменение скорости движения людей в потоке в зависимости от его плотности, изображенное графически, обнаруживается впервые в работе С. В. Беляева .

Состав людей в потоке, как правило, неоднородный, как по их индивидуальному физическому, так и психическому состоянию (рис. 3.7).

Рис. 3.7. Психофизиологические характеристики людского потока

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшегопрофессионального образования «Оренбургский государственный университет»

Кафедра безопасности жизнедеятельности

РАСЧЕТ ВРЕМЕНИ ЭВАКУАЦИИ


Введение

1 Расчет допустимой продолжительности эвакуации при пожаре

2 Расчет времени эвакуации

3 Пример расчета

Список использованных источников

Приложение А. Таблица АЛ – Категории производства

Приложение Б. Таблица Б.1 – Степень огнестойкости для различныхзданий

Приложение В. Таблица В.1 – Средняя скорость выгорания и теплотасгорания веществ и материалов

Приложение Г. Таблица Г.1 – Линейная скорость распространенияпламени на поверхности материалов

Приложение Д. Таблица Д. 1 – Время задержки начала эвакуации

Приложение Е. Таблица ЕЛ – Площадь проекции человека. Таблица Е.2 -Зависимость скорости и интенсивности движения от плотности людскогопотока


Введение

Одним из основных способов защиты от поражающих факторов ЧС является своевременная эвакуация и рассредоточение персонала объектов и населения из опасных районов и зон бедствий.

Эвакуация – комплекс мероприятий по организованному выводу или вывозу персонала объектов из зон ЧС или вероятностей ЧС, а также жизнеобеспечение эвакуированных в районе размещения.

При проектировании зданий и сооружений одной из задач является создание наиболее благоприятных условий для движения человека при возможной ЧС и обеспечение его безопасности. Вынужденное движение связано с необходимостью покинуть помещение или здание из-за возникшей опасности (пожар, авария и т.п.). Профессором В.М.Предтеченским впервые рассмотрены основы теории движения людей как важного функционального процесса, свойственного зданиям различного назначения.

Практика показывает, что вынужденное движение имеет свои специфические особенности, которые необходимо учитывать для сохранения здоровья и жизни людей. Установлено, что в США ежегодно на пожарах погибает около 11000 человек. Наиболее крупные катастрофы с человеческими жертвами произошли за последнее время именно в США. Статистика показывает, что наибольшее число жертв приходится на пожары в зданиях с массовым пребыванием людей. Число жертв на некоторых пожарах в театрах, универмагах и других общественных зданиях достигло несколько сотен человек.

Основная особенность вынужденной эвакуации заключается в том, что при возникновении пожара, уже в самой его начальной стадии, человеку угрожает опасность в результате того, что пожар сопровождается выделением тепла, продуктов полного и неполного сгорания, токсических веществ, обрушением конструкций, что так или иначе угрожает здоровью или даже жизни человека. Поэтому при проектировании зданий принимаются меры, чтобы процесс эвакуации мог бы завершиться в необходимое время.

Следующая особенность заключается в том, что процесс движения людей в силу угрожающей им опасности инстинктивно начинается одновременно в одном направлении в сторону выходов, при известном проявлении физических усилий у части эвакуирующихся. Это приводит к тому, что проходы быстро заполняются людьми при определенной плотности людских потоков. С увеличением плотности потоков скорости движения снижаются, что создает вполне определенный ритм и объективность процесса движения. Если при нормальном движении процесс эвакуации носит произвольный характер (человек волен двигаться с любой скоростью и в любом направлении), то при вынужденной эвакуации это становится невозможным.

Показателем эффективности процесса вынужденной эвакуации является время, в течение которого люди могут при необходимости покинуть отдельные помещения и здание в целом.

Безопасность вынужденной эвакуации достигается в случае, если продолжительность эвакуации людей из отдельных помещений или зданий в целом будет меньше продолжительности пожара, по истечении которой возникают опасные для человека воздействия.

Кратковременность процесса эвакуации достигается конструктивно-планировочными и организационными решениями, которые нормируются соответствующими СНиПами.

Ввиду того, что при вынужденной эвакуации не каждая дверь, лестница или проем могут обеспечить кратковременную и безопасную эвакуацию (тупиковый коридор, дверь в соседнее помещение без выхода, оконный проем и др.), нормы проектирования оговаривают понятия «эвакуационный выход» и «эвакуационный путь».

Согласно нормам (СНиП П-А. 5–62, п. 4.1) эвакуационными выходами считаются дверные проемы, если они ведут из помещений непосредственно наружу; в лестничную клетку с выходом наружу непосредственно или через вестибюль; в проход или коридор с непосредственным выходом наружу или в лестничную клетку; в соседние помещения того же этажа, обладающие огнестойкостью не ниже III степени, не содержащие производств, относящихся по пожарной опасности к категориям А, Б и В, и имеющие непосредственный выход наружу или в лестничную клетку (см. приложение А) .

Все проемы, в том числе и дверные, не обладающие указанными выше признаками, не считаются эвакуационными и в расчет не принимаются.

К эвакуационным путям относят такие, которые ведут к эвакуационному выходу и обеспечивают безопасное движение в течение определенного времени. Наиболее распространенными путями эвакуации являются проходы, коридоры, фойе и лестницы. Пути сообщения, связанные с механическим приводом (лифты, эскалаторы), не относятся к путям эвакуации, так как всякий механический привод связан с источниками энергии, которые могут при пожаре или аварии выйти из строя.

Запасными выходами называют такие, которые не используются при нормальном движении, но могут быть использованы в случае необходимости при вынужденной эвакуации. Установлено, что люди обычно пользуются при вынужденной эвакуации входами, которые ими использовались при нормальном движении. Поэтому в помещениях с массовым пребыванием людей запасные выходы в расчет эвакуации не принимаются .

Основными параметрами, характеризующими процесс эвакуации из зданий и сооружений, являются:

Плотность людского потока (D);

Скорость движения людского потока (v);

Пропускная способность пути (Q);

Интенсивность движения (q) ;

Длина эвакуационных путей, как горизонтальных, так и наклонных;

Ширина эвакуационных путей.

Плотность людских потоков. Плотность людских потоков можно измерять в различных единицах. Так, например, для определения длины шага человека и скорости его движения удобно знать среднюю длину участка эвакуационного пути, приходящуюся на одного человека. Длина шага человека принимается равной длине участка пути, приходящейся на человека, за вычетом длины ступни (рисунок 1).

Рисунок 1 – Схема к определению длины шага и линейной плотности

В производственных зданиях или помещениях с небольшой заселенностью плотность может быть более 1 м/чел. Плотность, измеряемую длиной пути на одного человека, принято называть линейной и измерять в м/чел. Обозначим линейную плотность Д.

Более наглядной единицей измерения плотности людских потоков является плотность, отнесенная к единице площади эвакуационного пути и выражаемая в чел/м 2 . Эта плотность называется абсолютной и получается путем деления количества людей на площадь занятого ими эвакуационного пути и обозначается Др. Пользуясь этой единицей измерения, удобно определять пропускную способность эвакуационных путей и выходов. Эта плотность может колебаться от 1 до 10–12 чел./м 2 для взрослых людей и до 20–25 чел./м для школьников.

По предложению кандидата технических наук А.И. Милинского, плотность потоков измеряют как отношение части площади проходов, занятой людьми, к общей площади проходов. Эта величина характеризует степень заполнения эвакуационных путей эвакуирующимися. Часть площади проходов, занятую людьми, определяют как сумму площадей горизонтальных проекций каждого человека (приложение Е, таблица ЕЛ). Площадь горизонтальной проекции одного человека зависит от возраста, характера, одежды и колеблется в пределах от 0,04 до 0,126 м 2 . В каждом отдельном случае площадь проекции одного человека может быть определена, как площадь эллипса:

(1)

где а – ширина человека, м; с – его толщина, м.

Ширина взрослого человека в плечах колеблется от 0,38 до 0,5 м, а толщина – от 0,25 до 0,3 м. Имея в виду различный рост людей и некоторую сжимаемость потока за счет одежды, плотность может в отдельных случаях превышать 1 м /м. Эту плотность назовем относительной, или безразмерной, и обозначим D o .

В связи с тем, что в потоке встречаются люди различного возраста, пола и различной конфигурации, данные о плотности потоков представляют в известной степени усредненные значения.

Для расчетов вынужденной эвакуации вводится понятие расчетной плотности людских потоков. Под расчетной плотностью людских потоков подразумевается наибольшее значение плотности, возможное при движении на каком-либо участке эвакуационного пути. Максимально возможное значение плотности называется предельным. Под предельным подразумевают такое значение плотности, при превышении которого вызывается механическое повреждение человеческого тела или асфиксия.

При необходимости можно от одной размерности плотности перейти к другой. При этом можно пользоваться следующими соотношениями:


Где f– средний размер площади проекции одного человека, м /чел.;

а – ширина человека, м.

При массовых людских потоках длина шага ограничивается и зависит от плотности потоков. Если принять среднюю длину шага взрослого человека твной 70 см, а длину ступни – равной 25 см, то линейная плотность, при которой возможно движение с указанной длиной шага, будет:

0,7+ 0,25 = 0,95.

Практически считают, что шаг длиной 0,7 м сохранится и при линейной плотности, равной 0,8. Это объясняется тем, что при массовых потоках человек продвигает ногу между впереди идущими, что и способствует сохранению дайны шага.

Скорость движения. Обследования скоростей движения при предельных плотностях показали, что минимальные скорости на горизонтальных участках пути колеблются в пределах от 15 до 17 м/мин. Расчетная скорость движения, узаконенная нормами проектирования для помещений с массовым пребыванием людей, принимается равной 16 м/мин.

На участках эвакуационного пути или в зданиях, где заведомо плотности потоков при вынужденном движении будут меньше предельных значений, скорости движения будут соответственно больше. В этом случае при определении скорости вынужденного движения исходят из длины и частоты шага человека. Для практических расчетов можно скорость движения определять по формуле:

(4)

где п – число шагов в мин, равное 100.

Скорость движения при предельных плотностях по лестнице вниз получена 10 м/мин, а по лестнице вверх – 8 м/мин.

Пропускная способность выходов. Под удельной пропускной способностью выходов подразумевают количество людей, проходящих через выход шириной в 1 м за 1 мин.

Наименьшее значение удельной пропускной способности, полученное опытным путем, при данной плотности именуется расчетной удельной пропускной способностью. Удельная пропускная способность выходов зависит от ширины выходов, плотностей людских потоков и отношения ширины людских потоков к ширине выхода.

Нормами установлена пропускная способность дверей шириной до 1,5 м, равная 50 чел./м-мин, а шириной более 1,5 м 60 чел./м-мин (для предельных плотностей).

Размеры эвакуационных выходов. Кроме размеров эвакуационных путей и выходов, нормы регламентируют их конструктивно-планировочные решения, обеспечивающие организованное и безопасное движение людей.

Пожарная опасность производственных процессов в промышленных зданиях характеризуется физико-химическими свойствами веществ, образующихся в производстве. Производства категорий А и Б, в которых обращаются жидкости и газы, представляют особую опасность при пожарах в силу возможности быстрого распространения горения и задымления зданий, поэтому протяженность путей для них является наименьшей. В производствах категории В, где обращаются твердые горючие вещества, скорость распространения горения меньше, срок эвакуации может быть несколько увеличен, а следовательно, и протяженность путей эвакуации будет больше, чем для производства категорий А и В. В производствах категорий Г и Д, размещаемых в зданиях I и II степеней огнестойкости, протяженность путей эвакуации не ограничивается (для определения категории здания см. приложение А).

При нормировании исходили из того, что количество эвакуационных путей, выходов и их размеры должны одновременно удовлетворять четырем условиям:

1) наибольшее фактическое расстояние от возможного места пребываниячеловека по линии свободных проходов или от двери наиболее удаленногопомещения 1 ф до ближайшего эвакуационного выхода должно быть меньше илиравно требуемому по нормам 1 тр

2) суммарная ширина эвакуационных выходов и лестниц,предусмотренная проектом, д ф должна быть больше или равна требуемой понормам

3) количество эвакуационных выходов и лестниц по соображениямбезопасности должно быть, как правило, не меньше двух.

4) ширина эвакуационных выходов и лестниц не должна быть меньшеили больше значений, предусмотренных нормами .

Обычно в производственных зданиях протяженность путей эвакуации измеряют от наиболее удаленного рабочего места до ближайшего эвакуационного выхода. Чаще всего эти расстояния нормируют в пределах первого этапа эвакуации. При этом косвенно увеличивается общая продолжительность эвакуации людей из здания в целом. В многоэтажных зданиях протяженность путей эвакуации в помещениях будет меньше, чем в одноэтажных. Это совершенно правильное положение дано в нормах.

Степень огнестойкости здания также влияет на протяженность эвакуационных путей, так как она предопределяет скорость распространения горения по конструкциям. В зданиях I и II степеней огнестойкости протяженность путей эвакуации при прочих равных условиях будет больше, чем в зданиях III, IV и V степеней огнестойкости.

Степень огнестойкости зданий определяется минимальными пределами огнестойкости строительных конструкций и максимальными пределами распространения огня по этим конструкциям, при определении степени огнестойкости необходимо воспользоваться приложением Б.

Протяженность путей эвакуации для общественных и жилых зданий предусматривается, как расстояние от дверей наиболее удаленного помещения до выхода наружу или в лестничную клетку с выходом наружу непосредственно или через вестибюль. Обычно при назначении величины предельного удаления учитываются назначение здания и степеньогнестойкости. Согласно СНиП П-Л.2–62 «Общественные здания», протяженность путей эвакуации до выхода в лестничную клетку незначительна и удовлетворяет требованиям безопасности.

1. Расчет допустимой продолжительности эвакуации при пожаре

При возникновении пожара опасность для человека составляют высокие температуры, снижение концентрации кислорода в воздухе помещений и возможность потери видимости вследствие задымления зданий.

Время достижения критических для человека температур и концентраций кислорода на пожаре именуется критической продолжительностью пожара и обозначается .

Критическая продолжительность пожара зависит от многих переменных:

(1.1)

где – объем воздуха в рассматриваемом здании или помещении, м 3 ;

с – удельная изобарная теплоемкость газа, кДж/кг-град;

t Kp критическая для человека температура, равная 70°С;

t H начальная температура воздуха, °С;

коэффициент, характеризующий потери тепла на нагрев конструкций и окружающих предметов принимается в среднем равным 0,5;

Q теплота сгорания веществ, кДж/кг, (приложение В);

f – площадь поверхности горения, м 2 ;

п – весовая скорость горения, кг/м 2 -мин (приложение В);

v линейная скорость распространения огня по поверхности горючих веществ, м/мин (приложение Г).

Для определения критической продолжительности пожара по температуре в производственных зданиях с применением легковоспламеняющихся и горючих жидкостей можно воспользоваться формулой, полученной на основании уравнения теплового баланса:


Свободный объем помещения соответствует разности между геометрическим объемом и объемом оборудования или предметов, находящихся внутри. Если рассчитывать свободный объем невозможно, допускается принимать его равным 80% геометрического объема.

Удельная теплоемкость сухого воздуха при атмосферном давлении 760 мм. рт. ст., согласно табличным данным составляет 1005 кДж/кг-град при температуре от 0 до 60°С и 1009 кДж/кг-град при температуре от 60 до 120°С.

Применительно к производственным и гражданским зданиям с применением твердых горючих веществ критическая продолжительность пожара определяется по формуле:

(1.3)

По снижению концентрации кислорода в воздухе помещения критическую продолжительность пожара определяют по формуле:

(1.4)

где W02 – расход кислорода на сгорание 1 кг горючих веществ, м /кг, согласно теоретическому расчету составляет 4,76 огмин .

Линейная скорость распространения огня при пожарах, по данным ВНИИПО, составляет 0,33–6,0 м/мин, более точные данные для разных материалов представлены в приложении Г.


Критические продолжительности пожара по потере видимости и по каждому из газообразных токсичных продуктов горения больше, чем вышеперечисленные предыдущие, поэтому в расчет не принимаются.

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное:

(1.5)

Допустимую продолжительность эвакуации определяют по формулам:

где и соответственно допустимая продолжительность

эвакуации и критическая продолжительность пожара при эвакуации, мин,

m коэффициент безопасности, зависящий от степени противопожарной защиты здания, его назначения и свойств горючих веществ, образующихся в производстве или являющихся предметом обстановки помещений или их отделки.

Для зрелищных предприятий с колосниковой сценой, отделенной от зрительного зала противопожарной стеной и противопожарным занавесом, при огнезащитной обработке горючих веществ на сцене, наличии стационарных и автоматических средств тушения и средств оповещения о пожаре m = 1,25.

Для зрелищных предприятий при отсутствии колосниковой сцены (кинотеатры, цирки и т.п.) m = 1,25.

Для зрелищных предприятий с эстрадой для концертных представлений т =1,0.

Для зрелищных предприятий с колосниковой сценой и при отсутствии противопожарного занавеса и автоматических средств тушения и оповещения о пожаре т = 0,5.

В производственных зданиях при наличии средств автоматического тушения и оповещения о пожаре т = 2,0.

В производственных зданиях при отсутствии средств автоматического тушения и оповещения о пожаре т= 1,0.

При размещении производственных и других процессов в зданиях III степени огнестойкости т = 0,65–0,7.

Критическая продолжительность пожара для здания в целом устанавливается в зависимости от времени проникновения продуктов горения и возможной потери видимости в коммуникационных помещениях, размещаемых до выхода из здания.

Опыты, проведенные по сжиганию древесины, показали, что время, по истечении которого возможна потеря видимости, зависит от объема помещений, весовой скорости горения веществ, скорости распространения пламени по поверхности веществ и полноты горения. В большинстве случаев существенная потеря видимости при сжигании твердых горючих веществ наступала после того, как в помещении возникали критические для человека температуры. Наибольшее количество дымообразующих веществ наступает в фазе тления, которая характерна для волокнистых материалов.

При горении волокнистых веществ во взрыхленном состоянии в течение 1–2 мин имеет место интенсивное горение с поверхности, после чего начинается тление с бурным дымообразованием. При горении твердых изделий на основе древесины дымообразование и распространение продуктов горения в смежные помещения наблюдаются через 5–6 мин.

Наблюдения показали, что в начале эвакуации решающим фактором для определения критической продолжительности пожара является воздействие тепла на организм человека или снижение концентрации кислорода. При этом учитывается, что даже незначительное задымление, при котором еще сохраняется удовлетворительная видимость, может оказать отрицательное психологическое воздействие на эвакуирующихся.

Оценивая в итоге критическую продолжительность пожара для эвакуации людей из здания в целом, можно установить следующее.

При пожарах в гражданских и производственных зданиях, где основным горючим материалом являются целлюлозные материалы (в том числе древесина), критическая продолжительность пожара может быть принята равной 5–6 мин.

При пожарах в зданиях, где обращаются волокнистые материалы во взрыхленном состоянии, а также горючие и легковоспламеняющиеся жидкости – от 1,5 до 2 мин.

В зданиях, в которых не может быть обеспечена эвакуация людей в течение указанного времени, должны приниматься меры по созданию незадымляемых эвакуационных путей.

В вязи с проектированием зданий повышенной этажности стали широко применяться так называемые незадымляемые лестницы. В настоящее время существует несколько вариантов устройства незадымляемых лестниц. Наиболее популярным является вариант со входом в лестничную клетку через так называемую воздушную зону. В качестве воздушной зоны используются балконы, лоджии и галереи (рисунок 2, а, б).

Рисунок 2 – Незадымляемые лестницы: а – вход в лестничную клетку через балкон; б – вход в лестничную клетку через галерею.

2. Расчет времени эвакуации

Продолжительность эвакуации людей до выхода наружу из здания определяют по протяженности путей эвакуации и пропускной способности дверей и лестниц. Расчет ведется для условий, что на путях эвакуации плотности потоков равномерны и достигают максимальных значений.

Согласно ГОСТ 12.1.004–91 (приложение 2, п. 2.4), общее время эвакуации людей складывается из интервала «времени от возникновения

пожара до начала эвакуации людей», т н э , и расчетного времени эвакуации, t p , которое представляет собой сумму времени движения людского потока по отдельным участкам ( t ,) его маршрута от места нахождения людей в момент начала эвакуации до эвакуационных выходов из помещения, с этажа, из здания.

Необходимость учета времени начала эвакуации впервые в нашей стране установлена ГОСТ 12.1.004–91 . Исследования, проведенные в различных странах, показали, что при получении сигнала о пожаре, человек будет исследовать ситуацию, оповещать о пожаре, пытаться бороться с огнем, собирать вещи, оказывать помощь и т.п. Среднее значение время задержки начала эвакуации (при наличии системы оповещения) может быть невысоким, но может достигать и относительно высоких значений. Например, значение 8,6 мкн было зафиксировано при проведении учебной эвакуации в жилом здании, 25,6 мин в здании Всемирного Торгового Центра при пожаре в 1993 году .

Ввиду того, что продолжительность этого этапа, существенно влияет на общее время эвакуации, очень важно знать, какие факторы определяют его величину (следует иметь ввиду, что большинство этих факторов также будут влиять на протяжении всего процесса эвакуации). Опираясь на существующие работы в этой области, можно выделить следующие:

Состояние человека: устойчивые факторы (ограничение органов чувств, физические ограничения, временные факторы (сон/бодрствование), усталость, стресс, а также состояние опьянения);

Система оповещения;

Действия персонала;

Социальные и родственные связи человека;

Противопожарный тренинг и обучение;

Тип здания.

Время задержки начала эвакуации берется согласно приложению Д.

Расчетное время эвакуации людей ( t P ) следует определять как сумму времени движения людского потока по отдельным участкам пути t f :

......................................................... (2.1)

где – время задержки начала эвакуации;

t 1 – время движения людского потока на первом участке, мин;

t 2 , t 3 ,.......... t i – время движения людского потока на каждом из следующих после первого участкам пути, мин.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной /, и шириной bj . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени длина и ширина каждого участка пути эвакуации принимаются по проекту. Длина пути по лестничным маршам, а также по пандусам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельным участком горизонтального пути, имеющим конечную длину.

Время движения людского потока по первому участку пути ( t ;), мин, вычисляют по формуле:

где длина первого участка пути, м;

– значение скорости движения людского потока по горизонтальному пути на первом участке, определяется в зависимости от относительной плотности D, м 2 /м 2 .

Плотность людского потока ( D \) на первом участке пути, м /м, вычисляют по формуле:

где число людей на первом участке, чел.;

f – средняя площадь горизонтальной проекции человека, принимаемая по таблице Е. 1 приложения Е, м 2 /чел.;

и длина и ширина первого участка пути, м.

Скорость V/ движения людского потока на участках пути, следующих после первого, принимается по таблице Е.2 приложения Е в зависимости от значения интенсивности движения людского потока по каждому из этих участков пути, которое вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

где , – ширина рассматриваемого i‑гo и предшествующего ему участка пути, м;

, – значения интенсивности движения людского потока по рассматриваемому i‑му и предшествующему участкам пути, м/мин.

Если значение , определяемое по формуле (2.4), меньше или равно значению q max , то время движения по участку пути () в минуту: при этом значения q max , м/мин, следует принимать по таблице 2.1.

Таблица 2.1 – Интенсивность движения людей

Если значение q h определенное по формуле (2.4), больше q max , то ширину bj данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:


При невозможности выполнения условия (2.6) интенсивность и скорость движения людского потока по участку пути i определяют по таблице Е.2 приложения Е при значении D = 0,9 и более. При этом должно учитываться время задержки движения людей из-за образовавшегося скопления.

При слиянии вначале участка i двух и более людских потоков (рисунок 3) интенсивность движения ( }, м/мин, вычисляют по формуле:

(2.7)

- интенсивность движения людских потоков, сливающихся в начале участка /, м/мин;

i ширина участков пути слияния, м;

ширина рассматриваемого участка пути, м.

Если значение определенное по формуле (2.7), больше q max , то ширину - данного участка пути следует увеличивать на такую величину, чтобы соблюдалось условие (2.6). В этом случае время движения по участку i определяется по формуле (2.5).

Интенсивность движения в дверном проеме шириной менее 1,6 м определяется по формуле:

Где b ‑ ширина проема.

Время движения через проем определяется как частное деления количества людей в потоке на пропускную способность проема:

Рисунок 3 – Слияние людских потоков

3. Порядок проведения расчета

· Выбрать из рассчитанных критических продолжительностей пожара минимальную и по ней рассчитать допустимую продолжительность эвакуации по формуле (1.6).

· Определить расчетное время эвакуации людей при пожаре, воспользовавшись формулой (2.1).

· Сравнить расчетное и допустимое время эвакуации, сделать выводы.

4. Пример расчета

Необходимо определить время эвакуации из кабинета сотрудников предприятия «Обус» при возникновении пожара в здании. Административное здание панельного типа, не оборудовано автоматической системой сигнализации и оповещения о пожаре. Здание двухэтажное, имеет размеры в плане 12x32 м, в его коридорах шириной 3 м имеются схемы эвакуации людей при пожаре. Кабинет объемом 126 м 3 расположен на втором этаже в непосредственной близости от лестничной клетки, ведущей на первый этаж. Лестничные клетки имеют ширину 1,5 м и длину 10 м. В кабинете работает 7 человек. Всего на этаже работают 98 человек. На первом этаже работает 76 человек. Схема эвакуации из здания представлена на рисунке 4

Рисунок 4 – Схема эвакуации сотрудников предприятия «Обус»: 1,2,3,4 – этапы эвакуации

4.1 Расчет времени эвакуации

4.1.2. Критическая продолжительность пожара по температуре рассчитывается по формуле (1.3) с учетом мебели в помещении:


4.1.3 Критическая продолжительность пожара по концентрации кислорода рассчитывается по формуле (1.4):

4.1.4 Минимальная продолжительность пожара по температуре
составляет 5,05 мин. Допустимая продолжительность эвакуации для данного
помещения:

4.1.5 Время задержки начала эвакуации принимается 4,1 мин по таблице Д. 1 приложения Д с учетом того, что здание не имеет автоматической системы сигнализации и оповещения о пожаре.

4.1.6 Для определения времени движения людей по первому участку, с учетом габаритных размеров кабинета 6x7 м, определяется плотность движения людского потока на первом участке по формуле (2.3):

.

По таблице Е.2 приложения Е скорость движения составляет 100 м/мин, интенсивность движения 1 м/мин, т.о. время движения по первому участку:


4.1.7 Длина дверного проема принимается равной нулю. Наибольшая возможная интенсивность движения в проеме в нормальных условиях g mffic =19,6 м/мин, интенсивность движения в проеме шириной 1,1 м рассчитывается по формуле (2.8):

q d = 2,5 + 3,75 b = 2,5 + 3,75 1,1 = 6,62 м/мин,

q d поэтому движение через проем проходит беспрепятственно.

Время движения в проеме определяется по формуле (2.9):

4.1.8. Так как на втором этаже работает 98 человек, плотность людского потока второго этажа составит:

По таблице Е2 приложения Е скорость движения составляет 80 м/мин, интенсивность движения 8 м/мин, т.о. время движения по второму участку (из коридора на лестницу):

4.1.9 Для определения скорости движения по лестнице рассчитывается интенсивность движения на третьем участке по формул (2.4):

,


Это показывает, что на лестнице скорость людского потока снижается до 40 м/мин. Время движения по лестнице вниз (3-й участок):

4.1.10 При переходе на первый этаж происходит смешивание с потоком людей, двигающихся по первому этажу. Плотность людского потока для первого этажа:

при этом интенсивность движения составит около 8 м/мин.

4.1.11. При переходе на 4-й участок происходит слияние людских потоков, поэтому интенсивность движения определяется по формуле (2.7):

По таблице Е.2 приложения Е скорость движения равняется 40 м/мин, поэтому скорость движения по коридору первого этажа:

4.1.12 Тамбур при выходе на улицу имеет длину 5 метров, на этом участке образуется максимальная плотность людского потока поэтому согласно данным приложения скорость падает до 15 м/мин, а время движения по тамбуру составит:


4.1.13 При максимальной плотности людского потока интенсивность движения через дверной проем на улицу шириной более 1,6 м – 8,5 м/мин, время движения через него:

4.1.13 Расчетное время эвакуации рассчитывается по формуле (2.1):

4.1.14 Таким образом, расчетное время эвакуации из кабинетов предприятия «Обус» больше допустимого. Поэтому здание, в котором располагается предприятие, необходимо оборудовать системой оповещения о пожаре, средствами автоматической сигнализации.

Список использованных источников

1 Охрана труда в строительстве: Учеб. для вузов/ Н.Д. Золотницкий [и др.]. – М.: Высшая школа, 1969. – 472 с.

2 Безопасность труда в строительстве (Инженерные расчеты по дисциплине «Безопасность жизнедеятельности»): Учебное пособие/ Д.В. Коптев [и др.]. – М.: Изд-во АСВ, 2003. – 352 с.

3 Фетисов, П.А.Справочник по пожарной безопасности. – М.: Энергоиздат, 1984. – 262 с.

4 Таблица физических величин: Справочник./ И.К. Кикоин [и др.]

5 Шрайбер, Г. Огнетушащие средства. Физико-химические процессы при горении и тушении. Пер. с нем. – М.: Стройиздат, 1975. – 240 с.

6 ГОСТ 12.1.004–91.ССБТ. Пожарная безопасность. Общие требования. - Введ. с 01.07.1992. – М.: Изд-во стандартов, 1992. -78 с.

7 Дмитриченко А.С. Новый подход к расчету вынужденной эвакуации людей при пожарах / А.С. Дмитриченко, С.А. Соболевский, С.А. Татарников // Пожаровзрывобезопасность, №6. – 2002. – С. 25–32.


Приложение А

Категория помещения Характеристика веществ и материалов, находящихся (обращающихся) в помещении
1 2
А Взрывопожароопасная Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

Взрывопожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные пылевоздушные или парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1‑В4 Пожароопасная Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А и Б.
Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.
Д Негорючие вещества и материалы в холодном состоянии.

Приложение Б

Таблица Б.1 – Степень огнестойкости для различных зданий

Степень огнестойкости Конструктивные характеристики
I Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с применением листовых и плитных негорючих материалов
II То же. В покрытиях зданий допускается применять незащищенные стальные конструкции
III Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона. Для перекрытий допускается использование деревянных конструкций, защищенных штукатуркой или трудногорючими листовыми, а также плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
Ша

Здания преимущественно с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих листовых материалов с трудногорючим

утеплителем

Шб Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из цельной или клееной древесины, подвергнутой огнезащитной обработке, обеспечивающей требуемый предел распространения огня. Ограждающие конструкции – из панелей или поэлементной сборки, выполненные с применением древесины или материалов на ее основе. Древесина и другие горючие материалы ограждающих конструкций должны быть подвергнуты огнезащитной обработке или защищены от воздействия огня и высоких температур таким образом, чтобы обеспечить требуемый предел распространения огня.
IV Здания с несущими и ограждающими конструкциями из цельной или клееной древесины и других горючих или трудногорючих материалов, защищенных от воздействия огня и высоких температур штукатуркой или другими листовыми или плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
IVa Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих материалов с горючим утеплителем.
V Здания, к несущим и ограждающим конструкциям которых не предъявляются требования по пределам огнестойкости и пределам распространения огня

Приложение В

Таблица В.1 – Средняя скорость выгорания и теплота сгорания веществ и материалов

Вещества и материалы Весовая скорость Теплота сгорания
горения хЮ 3 , кДж-кг» 1
кг‑м – мин»
Бензин 61,7 41870
Ацетон 44,0 28890
Диэтиловый спирт 60,0 33500
Бензол 73,3 38520
Дизельное топливо 42,0 48870
Керосин 48,3 43540
Мазут 34,7 39770
Нефть 28,3 41870
Этиловый спирт 33,0 27200
Турбинное масло (ТП‑22) 30,0 41870
Изопропиловый спирт 31,3 30145
Изопентан 10,3 45220
Толуол 48,3 41030
Натрий металлический 17,5 10900
Древесина (бруски) 13,7% 39,3 13800
Древесина (мебель в жилых и 14,0 13800
административных зданиях 8–10%)
Бумага разрыхленная 8,0 13400
Бумага (книги, журналы) 4,2 13400
Книги на деревянных стеллажах 16,7 13400
Кинопленка триацетатная 9,0 18800
Карболитовые изделия 9,5 26900
Каучук СКС 13,0 43890
Каучук натуральный 19,0 44725
Органическое стекло 16,1 27670
Полистирол 14,4 39000
Резина 11,2 33520
Текстолит 6,7 20900
Пенополиуретан 2,8 24300
Волокно штапельное 6,7 13800
Волокно штапельное в кипах 22,5 13800
40x40x40 см
Полиэтилен 10,3 47140
Полипропилен 14,5 45670
Хлопок в тюках 190 кг х м» 2,4 16750
Хлопок разрыхленный 21,3 15700
Лен разрыхленный 21,3 15700
Хлопок+капрон (3:1) 12,5 16200

Приложение Г

Таблица Г.1 – Линейная скорость распространения пламени на поверхности материалов

Линейная скорость
Материал распространения пламени
по поверхности,
м-мин» 1
Угары текстильного производства в 10
разрыхленном состоянии
Древесина в штабелях при влажности, %:
8–12 6,7
16–18 3,8
18–20 2,7
20–30 2,0
более 30 1,7
Древесина (мебель в административных и 0,36
других зданиях)
Подвешенные ворсистые ткани 6,7–10
Текстильные изделия в закрытом складе при 0,6
загрузке. 100 кг/м 2
Бумага в рулонах в закрытом складе при 0,5
загрузке 140 кг/м
Синтетический каучук в закрытом складе при 0,7
загрузке свыше 230 кг/м
Деревянные покрытия цехов большой площади, 2,8–5,3
деревянные стены, отделанные древесно-
волокнистыми плитами
Печные ограждающие конструкции с 7,5–10
утеплителем из заливочного ППУ
Соломенные и камышитовые изделия 6,7
Ткани (холст, байка, бязь):
по горизонтали 1,3
в вертикальном направлении 30
Листовой ППУ 5,0
Резинотехнические изделия в штабелях 1,7–2
Синтетическое покрытие «Скортон» 0,07
приТ=180 °С
Торфоплиты в штабелях 1,7
Кабель АШв1х120; АПВГЭЗх35+1х25; 0,3
АВВГЗх35+1х25:

Приложение Д

Таблица Д. 1 – Время задержи начала эвакуации

Тип и характеристика здания Время задержи начала эвакуации, мин, при типах систем оповещения
W1 W2 W3 W4
Административные, торговые и производственные здания (посетители находятся в бодрствующем состоянии, знакомы с планировкой здания и процедурой эвакуации) <1 3 >4 <4
Магазины, выставки, музеи, досуговые центры и другие здания массового назначения, (посетители находятся в бодрствующем состоянии, но могут быть не знакомы с планировкой здания и процедурой эвакуации) <2 3 >6 <6
Общежития, интернаты (посетители могут находиться в состоянии сна, но знакомы с планировкой здания и процедурой эвакуации) <2 4 >5 <5
Отели и пансионаты (посетители могут находиться в состоянии сна, и быть не знакомыми с планировкой здания и процедурой эвакуации) <2 4 >6 <5
Госпитали, дома престарелых и другие тому подобные заведения, (значительное число посетителей может нуждаться в помощи) <3 5 >8 <8

Примечание: Характеристика системы оповещения

W1 – оповещение и управление эвакуацией оператором;

W2 – использование записанных заранее типовых фраз и информационных табло;

W3 – сирена пожарной сигнализации;

W4 – без оповещения.


Приложение Е

Таблица Е.1 – Площадь проекции человека

Таблица Е.2 – Зависимость скорости и интенсивности движения от плотности людского потока

Плотность потока D,

Горизонтальный путь Дверной проем Лестница вниз Лестница вверх
0,01 100 1,0 1,0 100 1,0 60 0,6
0,05 100 5,0 5,0 100 5,0 60 3,0
0,1 80 8,0 8,7 95 9,5 53 5,3
0,2 60 12,0 13,4 68 13,6 40 8,0
0,3 47 14,1 15,6 52 16,6 32 9,6
0,4 40 16,0 18,4 40 16,0 26 10,4
0,5 33 16,5 19,6 31 15,6 22 11,0
0,6 27 16,2 19,0 24 14,4 18 10,6
0,7 23 16,1 18,5 18 12,6 15 10,5
0,8 19 15,2 17,3 13 10,4 10 10,0
0,9 и более 15 13,5 8,5 10 7,2 8 9,9
Примечание. Табличное значение интенсивности движения в дверном проеме при плотности потока 0,9 и более, равное 8,5 м/мин, установлено для дверного проема шириной 1,6 м и более.

г) Плотность людского потока (Di) вычисляется для каждого участка эвакуационного пути по формуле

Di = (N * f)/(Li * di), (3)

где N - число людей (табл. 1);

f - средняя площадь горизонтальной проекции человека (принять f = 0,1 м2);

di - ширина i-го участка эвакуационного пути, м (табл. 1).

д) Время прохождения дверного проёма приближённо можно рассчитать по формуле

tд.п. = N/(dд.п. * qд п.), (4)

где dд.п. – ширина дверного проёма, м (табл. 1);

qд.п. – пропускная способность 1 м ширины дверного проёма (принимается равной 50 чел./(м * мин) для дверей шириной менее 1,6 м и 60 чел./(м * мин) для дверей шириной 1,6 м и более).

Рассчитаем параметры для каждого участка движения.

1) Движение от самого удалённого рабочего места до двери помещения.

где a и b – длина и ширина помещения.

Плотность людского потока

Поскольку мы не знаем ширину проходов в помещении при расположении мебели, возьмем d1 = 1,4 м – ширина двери.

D1 = (N * f)/(L1 * d1) = (500* 0.1)/(18 * 1,4)= 1,98

Скорость V1 = 15 м/мин

t1 = L1/V1 = 18/15= 1,2 мин

2) Прохождения дверного проёма помещения

tд.п. = N/(dд.п. * qд п.)=500 чел/(1,4 м* 50 чел./(м * мин))= 7,14 мин

3) Движение по коридорам

Плотность людского потока

D3 = (N * f)/(L1 * d3)= (500* 0.1)/(40 * 3)= 0,42

Скорость (интерполяцией из таблицы)

V3 = 39 м/мин

t3 = L3/V3 = 40/39= 1,03 мин

4) Движение по лестницам

Плотность людского потока

D4 = (N * f)/(L1 * d3)= (500* 0.1)/(10* 2,0)= 2,5

Скорость V4 = 8 м/мин

t4 = L4/V4 = 10/8= 1,25 мин

5) Прохождения дверного проёма из здания

tд.п. = N/(dд.п. * qд п.)=500 чел/(1,8 м* 60 чел./(м * мин))=4,63 мин

6) Суммарное время

t = 1,2 + 7,14 + 1,03 + 1,25 + 4,63 = 15,25 мин

3. Необходимое (нормируемое) время эвакуации

При нормировании времени эвакуации для производственных зданий промышленных предприятий учитывается степень огнестойкости здания, категория производства и этажность здания (табл. 4). Необходимое время эвакуации из рабочих помещений производственных зданий зависит также и от объёма помещения (табл. 3).

Wп = 0,4 тыс. м3 - объём помещения.

Степень огнестойкости – I.

По таблице определяем

tп.о.з = 0,5 мин

Расчетное время эвакуации из рабочего помещения:

t =1,2 + 7,14 = 8,34 мин

Необходимое время эвакуации из производственного здания

tо.з = до 4 мин

Нормируемое время эвакуации из рабочего помещения почти в 17 раз меньше расчетного. Нормируемое время эвакуации из производственного здания в 4 раза меньше расчетного. Проект требованиям пожарной безопасности не соответствует.

Таблица 3

Необходимое время эвакуации из помещений производственных зданий (tп.п.з.)

Время эвакуации (tп.п.з.), мин, из помещений производственных зданий I, II и III степени огнестойкости при объёме помещения (Wп), тыс. м3

60 и более

Не ограничивается

Примечание. Для зданий IV степени огнестойкости необходимое время эвакуации уменьшается на 30%, а для зданий V степени огнестойкости – на 50%

Таблица 4

Необходимое время эвакуации из производственных зданий (tп.з.)

Часть 2. Пожар в рабочем помещении

Условие задачи . В рабочем помещении, облицованном древесноволокнистыми плитами (или имеющем перегородки из них), произошло возгорание. Площадь пожара, при горении облицовочных плит, приведена в исходных данных (табл. 1). Рассчитать время (tд), необходимое для эвакуации людей из горящего помещения с учётом задымлённости.

1. Определение расчётного времени эвакуации из рабочего помещения по задымлённости (tд)

а) tд = (Косл * Кг * Wп)/(Vд * Sп.г.), (5)

где Косл – допустимый коэффициент ослабления света (принять Косл = 0,1);

Кг – коэффициент условий газообмена;

Wп - объём рабочего помещения, м3 (табл. 1);

Vд - скорость дымообразования с единицы площади горения, м3/(м2 * мин);

Sп.г. - площадь поверхности горения, м2.

б) Кг = Sо/Sп, (6)

где Sо - площадь отверстий (проёмов) в ограждающих стенах помещения, м2 (табл. 1);

Sп - площадь пола помещения, м2 (вычислим по исходным данным).

Кг = Sо/(a*b) = 6/(15*10)= 0,04

в) Vд = Кд * Vг, (7)

где Кд - коэффициент состава продуктов горения (для древесноволокнистых плит равен 0,03 м3/кг);

Vг - массовая скорость горения (для древесноволокнистых плит принимается равной 10 кг/(м2 * мин)).

Vд = 0,03 * 10 =0,3 м/мин

г) Sп.г. = Sп.п. * Кп.г., (8)

где Sп.п. - предполагаемая площадь пожара, м2 (табл. 1);

Кп.г. – коэффициент поверхности горения (для разлившихся жидкостей и облицовочных плит Кп.г. = 1).

Sп.г. = 8 * 1 = 8 м2

tд = (Косл * Кг * Wп)/(Vд * Sп.г.) = (0,1 * 0,04 * 400)/(0,3 * 8.) = 0,67 мин

2. Оценка полученного результата

Расчётное время эвакуации по задымлённости из рабочего помещения, полученное по формуле (5) меньше расчётного временем эвакуации людей из рабочего помещения, полученным по формуле (1), равного 8,34 мин и больше необходимого (нормируемого) времени эвакуации из рабочего помещения, равного 0,5 мин. По времени эвакуации по задымленности проект требованиям соответствует, если внести в него изменения для соответствия нормируемому времени эвакуации.

Вывод:

Исходя из проделанных расчетов, можно сделать вывод, что строительный проект нормам пожарной безопасности не соответствует.

Двигающиеся в одном направлении люди образуют людской поток, характеризующийся

плотностью потока D

скоростью движения V

интенсивностью движения q

пропускной способностью участка пути Q

Плотность потока D

Плотность людского потока составляет количество человек N, размещающихся на

единице площади эвакуационного пути F:

При эвакуации взрослых людей плотность может составлять 10 – 12 чел./м2; при

эвакуации школьников 20 - 25 чел./ м2.

Для расчета эвакуации использовалась также безразмерная характеристика плотности,

которая определяется как отношение площади проекции, занимаемой эвакуирующимися, к площади эвакуационного пути:

где d, l – соответственно ширина и длина участка эвакуационного пути;

f - средняя площадь горизонтальной проекции человека, которая

составляет:

для взрослого человека в одежде 0,125 м2/чел.,

для взрослого в домашней одежде – 0,1 м2/чел.,

для подростка – 0, 07 м2/чел.

Интенсивность движения q

Интенсивность движения людского потока q характеризует количество людей,

проходящих через 1 м ширины эвакуационного пути за 1 мин.

В связи с тем, что в данном случае количество людей выражается не в чел., а в м2

(вместо N применяется выражение N f), размерность интенсивности следующая:

[q] = м2/м мин. = м / мин.

Пропускная способность участка пути Q

Пропускная способность участка пути характеризует количество людей, которое он способен пропустить в единицу времени. Пропускная способность участка пути в м2/мин определяется как произведение интенсивности движения q на ширину участка d:

Используя понятие пропускной способности участка пути, можно получить формулы для расчета интенсивности движения и времени задержки движения при слиянии людских потоков.

При слиянии нескольких людских потоков:

При беспрепятственном движении должно соблюдаться условие: Qi = ΣQi-1

Задержка движения людей в начале i-го участка наблюдается при Qi ≤ Qi-1

42.Состав людского потока по мобильности образующих его людей. Группы м обильности населения и их влияние на параметры движения людского потока.

43.Закономерности движений людских потоков по коммуникационным путям.

44. Расчетное (фактическое) и необходимое (допустимое) время эвакуации. Протяженность путей эвакуации. Нормирование

Расчет необходимого времени эвакуации

Необходимое время эвакуации – время по истечении которого при пожаре на уровне рабочей зоны появляются опасные для жизни и здоровья людей факторы пожара.

Для определения необходимого времени эвакуации надо знать критические

значения опасных факторов пожара и, кроме того, уметь определять время появления этих значений при пожаре.


К числу опасных факторов пожара относится:

· повышенная температура среды,

· лучистые потоки,

· токсичные продукты горения,

· потеря видимости вследствие задымления

Расчет фактического времени эвакуации

Перед тем, как выполнять расчет, необходимо:

1. весь путь эвакуации людей; разделить на отдельные расчетные участки пути

2. за начальный участок пути принимается проход между рабочими местами,

оборудованием, рядами кресел и т.п., наиболее удаленный от эвакуационного выхода;

3. при определении границ последующих участков на пути движения к

эвакуационному выходу исходят из того, что в пределах расчетного участка пути не должна изменяться ширина пути и не должно быть слияния потоков. Только при таких условиях можно принимать интенсивность и скорость движения постоянными по всей длине участка.

При таком подходе участками пути являются: проходы, коридоры, дверные

проемы, лестничные марши, тамбуры и т.д.

По проекту или в натуре определяются размеры каждого участка (ширина и длина) по их истинному значению. (Например, ширина дверного проема определяется за вычетом дверной коробки и выступающих частей двери, если они имеются. Ширина коридора при открывании дверей в сторону коридора (а так чаще всего и бывает) принимается с учетом того, что открытые двери фактически уменьшают ширину эвакуационного пути. При одностороннем расположении дверей ширина коридора уменьшается на половину ширины двери, а при двухстороннем – на ширину двери)

Длина пути в проеме принимается равной нулю, если толщина стены, в которой размещен проем менее 0,7 м.

Длина пути по лестнице определяется как суммарная длина ее маршей и площадок и может быть принята равной утроенной разности отметок между входом на лестницу и выходом из нее.

Методика расчета времени эвакуации заключается в следующем.

Расчетное время эвакуации определяется как сумма времен движения людского потока по отдельным участкам от наиболее удаленных рабочих мест размещению людей до эвакуационного выхода.

Время движения людского потока на отдельных участках пути определяется по формуле τ1 = l 1 /v 1

Величина скорости движения людей на первом участке пути определяется по

таблицам или графику в зависимости от вида пути и плотности людского потока.

На последующих участках скорость определяется по тем же таблицам или графику в зависимости от интенсивности движения, которая определяется по формулам в зависимости от характера слияния потоков (или отсутствия слияния).

Кроме этого в соответствии с реальной планировкой здания необходимо оценить загруженность выходов при эвакуации и рассчитать время эвакуации по наиболее загруженному эвакуационному выходу.

45-48 (Нуллаев)

45. Эвакуационные выходы и пути, время эвакуации, протяженность путей эвакуации, количество и размеры эвакуационных выходов.

Выходы являются эвакуационными, если они ведут:

а) из помещений первого этажа наружу:

Непосредственно;

Через коридор;

Через вестибюль (фойе);

Через лестничную клетку (ЛК);

Через коридор и вестибюль (фойе);

Через коридор и ЛК;

б) из помещений любого этажа, кроме первого:

Непосредственно в ЛК или на лестницу 3-го типа;

В коридор, ведущий в ЛК или на лестницу 3-го типа;

В холл (фойе), имеющий выход непосредственно в ЛК или на лестницу 3-го

в) в соседнее помещение (кроме помещения класса Ф5 категории А или Б) на том

же этаже, обеспеченное выходами, указанными в п.п. «а» и «б».

Нормируемые параметры эвакуационных выходов

минимальное расстояние между выходами:

п.6.15* СНиП 21-01-97* При наличии двух эвакуационных выходов и более они

должны быть расположены рассредоточено (за исключением выходов из коридоров в

незадымляемые ЛК). Минимальное расстояние L, м между наиболее удаленными один от

другого эвакуационными выходами следует определять по формулам:

из помещения L ≥ 1,5 √P/ (n – 1)

из коридора L ≥ 0,33 D/ (n – 1)

где P – периметр помещения, м;

n – число эвакуационных выходов;

D – длина коридора, м.

При наличии двух и более эвакуационных выходов общая пропускная

способность всех выходов, кроме каждого одного из них, должна обеспечить

безопасную эвакуацию всех людей, находящихся в помещении, на этаже или в

расстояние по коридору от двери наиболее удаленного помещения до ближайшего

выхода наружу или в ЛК (для производственных зданий п.6.9, табл.2 СНиП 31-03-2001);

высота эвакуационных выходов в свету (не менее 1,9 м);

ширина эвакуационных выходов в свету:

1,2 м – из помещений класса Ф1.1 при числе эвакуирующихся более 15 чел., из

помещений и зданий других классов функциональной пожарной опасности, за

исключением класса Ф1.3 (многоквартирные жилые дома) – 50 чел.;

0,8 м – во всех остальных случаях.

Для производственных зданий (п.6.10 СНиП 31-03-2001) ширину эвакуационного

выхода (двери) из помещений следует принимать в зависимости от общего количества

людей, эвакуирующихся через этот выход, и количества людей на 1 м ширины выхода

(двери), установленного в таблице 3, но не менее 0,9 м при наличии в числе работающих

инвалидов с нарушениями опорно-двигательного аппарата. Ширину эвакуационного

(двери) из коридора наружу или в ЛК … по табл.4.

направление открывания дверей на путях эвакуации;

Двери эвакуационных выходов и другие двери на путях эвакуации должны

открываться по направлению выхода из здания.

Не нормируется направление открывания дверей для: помещений классов одно-

и многоквартирные жилые дома; помещений с одновременным пребыванием не более 15

чел., кроме помещений категорий А и Б; кладовых площадью не более 200 м2 без

постоянных рабочих мест; санитарных узлов; выхода на площадки лестниц 3-го типа;

наружных дверей зданий, расположенных в северной строительной климатической зоне.

освещение путей эвакуации;

Пути эвакуации должны быть освещены в соответствии с требованиями СНиП

материалы (их горючесть), используемые на путях эвакуации;

В зданиях всех степеней огнестойкости и классов конструктивной пожарной

опасности, кроме зданий V степени огнестойкости и зданий класса С3, на путях эвакуации

не допускается применять материалы с более высокой пожарной опасностью, чем:

(п.6.25* СНиП 21-01-97*)

высота и ширина горизонтальных участков путей эвакуации;

Высота горизонтальных участков путей эвакуации в свету должна быть не менее

2 м, ширина горизонтальных участков путей эвакуации и пандусов должна быть не менее

(п.6.27 СНиП 21-01-97*):

1,2 м – для общих коридоров, по которым могут эвакуироваться из помещений

класса Ф1 более 15 чел., из помещений других классов функциональной пожарной

опасности – более 50 чел.;

0,7 м – для проходов к одиночным рабочим местам;

1,0 м – во всех других случаях.

В любом случае эвакуационные пути должны быть такой ширины, чтобы с

учетом их геометрии по ним можно было беспрепятственно пронести носилки с лежащим

на них человеком.

46.Требования пожарной безопасности при разработке генеральных планов. Проти-вопожарные разрывы. Нормирование.

Общие принципы генеральной планировки

В генеральных планах предприятий и промышленных узлов следует

предусматривать (п. 3.3* СНиП II-89-80*):

а) функциональное зонирование территории с учетом технологических связей,

санитарно-гигиенических и ПП требований, грузооборота и видов транспорта;

б) рациональные производственные, транспортные и инженерные связи на

предприятиях, между ними и селитебной территорий;

в) кооперирование основных и вспомогательных производств и хозяйств, включая

аналогичные производства и хозяйства, обслуживающие селитебную часть города или

населенного пункта;

г) интенсивное использование территории, включая наземное и подземное

пространства при необходимых и достаточных резервах для расширения предприятия;

д) организацию единой сети обслуживания трудящихся;

е) возможность осуществления строительства и ввода в эксплуатацию пусковыми

комплексами или очередями;

ж) благоустройство территории (площадки); и т.п.

Противопожарные разрывы

ПП разрывы предназначены для предупреждения возможности распространения

пожара на соседние здания и сооружения до момента введения сил и средств на тушение

пожара и защиту смежных объектов, а также для обеспечения успешного маневрирования

пожарных подразделений.

Таким образом, разрывы между зданиями и сооружениями можно рассматривать

один из видов ПП преград.

Факторы, влияющие на величину ПП разрывов

1. Допустимая интенсивность облучения.

2. Коэффициент облученности.

3. Геометрические характеристики пламени.

4. Излучающая способность пламени.

Нормирование ПП разрывов

СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и

сельских поселений;

СНиП II-89-80* Генеральные планы промышленных предприятий;

СНиП II-97-76 Генеральные планы сельскохозяйственных предприятий;

СНиП 2.11.03-93 Склады нефти и нефтепродуктов. Противопожарные нормы;

СНиП 2.11.06-91 Склады иных материалов. Противопожарные нормы

проектирования.

Как правило, главы строительных норм и правил регламентируют величину

разрыва между зданиями и сооружениями в зависимости от:

· их назначения,

· степени огнестойкости.

47.Пожарная безопасность систем вентиляции, кондиционирования воздуха, отопления и теплогенерирующих установок.

Требования к системам отопления

Санитарно-гигиенические

Экономические

Архитектурно-строительные

Производственно-монтажные

Эксплуатационные

1-поддержание заданной температуры

2-невысокие капитальные вложения

3-соответствие интерьерам и увязка строительным решениям

4-минимальное число унифицированных узлов и сокращение трудозатрат

5-эффективность действия, надежность, техническое совершенство.

Системы вентиляции

Вентиляция – совокупность мероприятий и устройств, обеспечивающих расчетный

воздухообмен в помещениях жилых, общественных и промышленных зданий.

Системы вытяжной и аварийной вентиляции (“ВОб”) следует предусматривать

отдельными для каждой группы помещений, размещенных в пределах одного пожарного

Системы ВОб проектируются общими для помещений

А) жилых;

Б) общественных, административных и производственных категории Д (в любых

сочетаниях);

В) производственных одной из категорий А или Б, размещенных не более, чем на

трех этажах;

Г) производственных одной из категорий В, Г или Д;

Д) складов и кладовых одной из категорий А, Б или В, размещенных не более, чем

на трех этажах;

сочетаниях общей площадью не более 1100 м2,

И) бытовых помещений - санитарных узлов, душевых, бань, прачечных и др.

помещений бытового назначения.

Системы ВОб допускается соединять в одну систему

а) жилые и административные или общественные, при условии установки

огнезадерживающего клапана;

48.Основные направления противодымной защиты зданий. Системы дымоудаления: назначение, виды и область применения.

Для удаления дыма при пожаре, для обеспечения эвакуации людей из помещений здания в начальной стадии пожара, возникшего в одном из помещений

Противодымная защита представляет собой комплекс объемно-планировочных и

инженерно-технических решений, направленных на предотвращение задымления при

пожаре путей эвакуации из помещений и зданий и уменьшение их задымления.

Может включать в себя систему дымоудаления из помещений и (или) коридоров при

пожаре, систему удаления дыма и газов после пожара, системы обеспечения

незадымляемости лестничных клеток, систему подпора воздуха в шахты лифтов,

лестничнолифтовые, лестничные и лифтовые холлы.

Расчет осуществляется по «периметру очага пожара» либо «по защите эвакуационных

проемов». В первом случае система дымо-удаления обеспечивает незадымленную зону

заданной высоты от пола в нижней части помещения, во втором случае предотвращает

выход дыма за пределы горящего помещения.

49-52 (Рогалев)

49. Порядок проведения пожарно-технической экспертизы проектной документации.

Экспертиза пожарной безопасности - это оценка соответствия объекта экспертизы предъявляемым к нему требованиям пожарной безопасности, результатом которой является заключение.

Пожарная безопасность – состояние защищенности личности, имущества, объекта защиты, характеризуемое возможностью предотвращения возникновения и развития пожара, а также воздействия на людей и имущество опасных факторов пожара.

Система противопожарной защиты - комплекс организационных мероприятий и технических средств, направленных на защиту людей и имущества от воздействия опасных факторов пожара и (или) ограничение последствий воздействия опасных факторов пожара на объект защиты (продукцию);

Пожарно - техническая экспертиза позволяет:

провести экспертизу строительных сооружений, проектов и рабочих чертежей;

провести проверку соответствия объектов противопожарным нормам, определение состояния противопожарной защиты объектов;

разработать декларацию пожарной безопасности (пожарнойдекларации ) для зданий различного назначения;

произвести независимую оценку пожарных рисков;

провести аудит пожарной безопасности;

установить причину возникновения пожара, место начала горения, способ поджога;

исследование, анализ и установления причин по факту возгорания автотранспортных средств.

Результатом независимой экспертизы пожарной безопасности является заключение (Декларация):

§ о соответствии (несоответствии) объекта защиты установленным законодательными и иными нормативными, правовыми актами Российской Федерации требованиям в области обеспечения пожарной безопасности, либо обосновывающее (подтверждающее) приемлемый (неприемлемый) уровень риска для жизни, здоровья людей, имущества при эксплуатации объекта защиты вследствие возможного воздействия на них опасных факторов пожаров.

Мотивацией объектов для проведения независимой экспертизы пожарной безопасности является:

1. Получение руководством (владельцем) полной и объективной картины относительно уровня обеспечения пожарной безопасности на объекте защиты в форме Декларации пожарной безопасности - документа, являющегося формой оценки соответствия объекта требованиям пожарной безопасности ;

2. Определение приоритетных направлений финансирования создания (реконструкции, совершенствования) систем пожарной безопасности при большом количестве недостатков;

3. Снижение финансовых рисков, связанных с возникновением пожаров;

4. Установление страховых сборов в зависимости от уровня защищенности объектов в области пожарной безопасности.

Объектами исследования пожарно - технической экспертизы , при проведении которой ставится вопрос о причине пожара, могут быть здания, сооружения, транспортные средства, оборудование, отдельные изделия или устройства, местность и др., подверженные воздействию пожара, а также обломки и осколки, обгоревшие части зданий, конструкций, транспорта, различные механизмы и материалы, остатки горевших веществ и материалов, документы, фотоснимки и пр. Как правило, в отношении проверки после пожара собственники целиком полагаются на Государственную противопожарную службу. Их вполне устраивает вывод о коротком замыкании как о причине пожара. Только при явных признаках поджога или значительном ущербе от пожара подается заявление в правоохранительные органы. Но поверхностно проведенная предварительная проверка не бывает квалифицированной, а ее материалы не содержат необходимой и всеобъемлющей информации о причине пожара. И если впоследствии пострадавшая сторона пытается получить компенсацию и защитить нарушенные в результате небрежного расследования права, то это удается далеко не всегда. Время потрачено, объект не подлежит исследованию, доказательства уничтожены.